scholarly journals Assaying Myeloperoxidase Inhibitors and Hypochlorous Acid Scavengers in HL60 Cell Line Using Quantum Dots

2013 ◽  
pp. 140-153 ◽  
Author(s):  
Zhongwei Liu ◽  
Yan Yan ◽  
Suhua Wang ◽  
Wei-Yi Ong ◽  
Choon Nam Ong ◽  
...  
1995 ◽  
Vol 206 (3) ◽  
pp. 927-934 ◽  
Author(s):  
K. Maehara ◽  
N. Kanayama ◽  
A. Halim ◽  
E. Elmaradny ◽  
T. Oda ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1609-1609
Author(s):  
Federica Servida ◽  
Francesco Onida ◽  
Domenico Delia ◽  
Cinzia Scavullo ◽  
Daniele Lecis ◽  
...  

Abstract The apoptotic process and its dysfunctions have become the focus of extensive pharmaceutical research in solid and hematopoietic tumors as well as neurodegenerative diseases. The X-Inhibitor of Apoptosis Protein (XIAP) binds caspase 9, 3 and 7, preventing their activation and, consequently, apoptosis. The Smac/DIABLO protein, released from mitochondria, binds XIAP as a dimer on the same caspase 9 (BIR3 domain) binding site. Similarly, the Smac protein interferes with the XIAP binding site for caspases 3 and 7, thus promoting both the extrinsic and intrinsic apoptotic paths. The thin balance of this binding equilibrium is altered in various tumors, including leukemia, where XIAP is overexpressed and a caspase-dependent resistance to enter apoptosis is usually observed. Thus, XIAP inhibition via Smac mimetics’ binding is at the same time a characterized protein-protein interaction, and a validated mechanism for intervention in cancer therapy. We tested 56 Smac mimetic compounds (designed by CISI - Center for biomolecular Interdisciplinary Studies and Industrial applications of the Milan University) for their in vitro capacity to bind to the XIAP BIR3 domain. We also evaluated the ability of the Smac mimetic compounds to inhibit the growth of the human leukemia HL60, K562 and Jurkat cell lines (derived from patients with promyelocyitic leukemia, blastic phase-CML and T acute lymphoblastic leukemia, respectively). Nine compounds which were shown to be active, were further investigated for their effect on cell cycle (by DNA staining with propidium iodide and cytofluorimetric analysis) and for possible synergistic effect in combination with other chemotherapeutic drugs (Cytarabine, Etoposide and Idarubicine). The same compounds were also tested on normal CD34+ hematopoietic progenitor cells. The cytotoxicity was evaluated after 72 hours treatment with Smac mimetic compounds by a colorimetric assay for the quantification of cell proliferation and viability based on the cleavage of the WST-8 tetrazolium salt by mitochondrial dehydrogenases. The effect of Smac mimetic compounds on CD34+ cells enriched from mobilized peripheral blood was assessed as the capability of inhibiting the myeloid colony growth (CFU-GM). The data were expressed as mean percentage of 3 replicates normalized to the untreated control. Overall, a strong correlation between the binding affinity to the XIAP BIR3 domain and the cytotoxic effect on the leukemic cell lines was observed. The more promising compounds showed IC50 ranging from 0,3 to 1 microM on the HL60 cell line. The Jurkat and K562 cell lines were less sensitive, with IC50 ranging from 11,8 microM to more than 50 microM. However, in the K562 cell line, the combined treatment unveiled synergistic effect with Cytarabine and Etoposide (R Kern index = 1,4 and 1,5 respectively). No cytotoxic effect was observed on normal controls at doses up to 80 microM. A consistent sub G1 apoptotic peak (up to 53% of apoptotic cells) was observed in the HL60 cell line after 48 hrs treatment, thus suggesting a strong activation of the apoptotic process. All together, our data suggest that Smac mimetics may have a promising therapeutic potential as a new class of anticancer drugs in hematopoietic malignancies. Further experiments are currently ongoing to confirm the effectiveness of these compounds also on primary cells from leukemia patients, both as single agents and in combination with conventional drugs. In particular, due to their ability to enhance pro-apoptotic effect, Smac mimetic compounds may allow to overcome resistance of cancer cells to standard chemotherapy.


2018 ◽  
Vol 108 (6) ◽  
pp. 607-614 ◽  
Author(s):  
Hiroyuki Morita ◽  
Akihito Matsuoka ◽  
Jun-ichiro Kida ◽  
Hiroyuki Tabata ◽  
Kaoru Tohyama ◽  
...  

Biochimie ◽  
2000 ◽  
Vol 82 (12) ◽  
pp. 1115-1122 ◽  
Author(s):  
Stéphanie Alexandre ◽  
Claudine Rast ◽  
Giao Nguyen-Ba ◽  
Guy G Poirier ◽  
Paule Vasseur

1998 ◽  
Vol 245 (2) ◽  
pp. 313-320 ◽  
Author(s):  
Noriko Takahashi ◽  
Tetsuya Fukui ◽  
Akiyo Iwahori ◽  
Yoshinori Kubo ◽  
Tomoo Hosoe ◽  
...  

1986 ◽  
Vol 10 (10) ◽  
pp. 1183-1191
Author(s):  
Mary E. Reyland ◽  
Robert B. Scott ◽  
William E. Keefe ◽  
Lavern W. Cooper

Proceedings ◽  
2019 ◽  
Vol 40 (1) ◽  
pp. 26
Author(s):  
Ali ◽  
Algburi

Cancer is one of the most debilitating and traumatic diseases of modern life, for which no curative approach is presently available. Even though the recent therapies used to treat patients with various types of cancer have not been completely effective, adjuvant therapies, including the use of medicinal plants, may have some effect in achieving cancer treatment goals. Cumin has also been widely used in traditional medicine to treat a variety of diseases, including hypolipidemia, cancer, and diabetes. We used cumin in different concentrations to observe effect of cumin on HL60 cell line. We used MTT cell viability test to investigate cytotoxic effect of cumin. We made experiment for 24, 48 and 72 h and we incubate our cumin exposed drug 37 °C in CO2 incubator. According to MTT results we found IC50 values for cumin 8.5 mg/mL for 72 h incubation. Generally, cancer cells show drug resistant to especially chemical drugs. Use of plant derived substances may reduce drug resistant on cancer cells. Especially if we use cumin combine with chemical drug, probably we will observe more toxic effect on cancer cell. Because combination effect will reduce drug resistant.


Sign in / Sign up

Export Citation Format

Share Document