scholarly journals Effect of Some Hydroxylamine-Metabolites on the Priming Activity for DNA Polymerase

10.5109/23727 ◽  
1981 ◽  
Vol 25 (4) ◽  
pp. 161-166
Author(s):  
Yoshifumi Tomita ◽  
Hiroaki Fujiki ◽  
Kazuki Shinohara ◽  
Hiroki Murakami ◽  
Hirohisa Omura
1966 ◽  
Vol 29 (1) ◽  
pp. 21-28 ◽  
Author(s):  
R. C. von Borstel ◽  
D. M. Prescott ◽  
F. J. Bollum

The enzyme calf thymus polymerase requires denatured or single-stranded DNA as a primer for DNA synthesis and is inactive on native DNA preparations. The enzyme and tritium-labeled deoxyribonucleoside triphosphates were incubated with alcohol-fixed and Carnoy-fixed tissue preparations to see if primer DNA could be found in several types of cells undergoing DNA synthesis. In all cases, low-pH controls were prepared for comparison. Priming activity was not found in nuclei that had been fixed in alcohol. Priming activity was found in cell nuclei that had been fixed with an acid fixative or had been treated at a low pH prior to treatment with the enzyme reaction mixture.


2019 ◽  
Author(s):  
Sven Basa ◽  
Malathi Nampally ◽  
Talita Honorato ◽  
Subha Narayan Das ◽  
Appa Rao Podile ◽  
...  

The biological activity of chitosans depends on their degree of polymerization (DP) and degree of acetylation (DA). However, information could also be carried by the pattern of acetylation (PA): the sequence of <i>β</i>-1,4-linked glucosamine (deacetylated/D) and <i>N</i>-acetylglucosamine (acetylated/A) units. To address this hypothesis, we prepared partially-acetylated chitosan oligosaccharides from a chitosan polymer (DA=35%, DP<sub>w</sub>=905) using recombinant chitosan hydrolases with distinct substrate and cleavage specificities. The mixtures were separated into fractions DP4–DP12, which were tested for elicitor and priming activities in rice cells. We confirmed that both activities were influenced by DP, <a>but also observed apparent DA-dependent priming activity, with the ADDD+DADD fraction proving remarkably effective</a>. We then compared all four mono-acetylated tetramers prepared using different chitin deacetylases and observed significant differences in priming activity. This demonstrates for the first time that PA influences the biological activity of chitosans, which can now be recognized as <i>bona fide</i> information-carrying molecules


2019 ◽  
Author(s):  
Sven Basa ◽  
Malathi Nampally ◽  
Talita Honorato ◽  
Subha Narayan Das ◽  
Appa Rao Podile ◽  
...  

The biological activity of chitosans depends on their degree of polymerization (DP) and degree of acetylation (DA). However, information could also be carried by the pattern of acetylation (PA): the sequence of <i>β</i>-1,4-linked glucosamine (deacetylated/D) and <i>N</i>-acetylglucosamine (acetylated/A) units. To address this hypothesis, we prepared partially-acetylated chitosan oligosaccharides from a chitosan polymer (DA=35%, DP<sub>w</sub>=905) using recombinant chitosan hydrolases with distinct substrate and cleavage specificities. The mixtures were separated into fractions DP4–DP12, which were tested for elicitor and priming activities in rice cells. We confirmed that both activities were influenced by DP, <a>but also observed apparent DA-dependent priming activity, with the ADDD+DADD fraction proving remarkably effective</a>. We then compared all four mono-acetylated tetramers prepared using different chitin deacetylases and observed significant differences in priming activity. This demonstrates for the first time that PA influences the biological activity of chitosans, which can now be recognized as <i>bona fide</i> information-carrying molecules


Sign in / Sign up

Export Citation Format

Share Document