antigenic targets
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 28)

H-INDEX

24
(FIVE YEARS 2)

Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1170
Author(s):  
Riccardo Tomasello ◽  
Giulio Giordano ◽  
Francesco Romano ◽  
Federica Vaccarino ◽  
Sergio Siragusa ◽  
...  

Antiphospholipid syndrome (APS) is frequently associated with thrombocytopenia, in most cases mild and in the absence of major bleedings. In some patients with a confirmed APS diagnosis, secondary immune thrombocytopenia (ITP) may lead to severe thrombocytopenia with consequent major bleeding. At the same time, the presence of antiphospholipid antibodies (aPL) in patients with a diagnosis of primary ITP has been reported in several studies, although with some specific characteristics especially related to the variety of antigenic targets. Even though it does not enter the APS defining criteria, thrombocytopenia should be regarded as a warning sign of a “high risk” APS and thus thoroughly evaluated. The presence of aPL in patients with ITP should be assessed as well to stratify the risk of paradoxical thrombosis. In detail, besides the high hemorrhagic risk in secondary thrombocytopenia, patients with a co-diagnosis of APS or only antibodies are also at risk of arterial and venous thrombosis. In this narrative review, we discuss the correlation between APS and ITP, the mechanisms behind the above-reported entities, in order to support clinicians to define the most appropriate treatment strategy in these patients, especially when anticoagulant or antiplatelet agents may be needed.


Author(s):  
Behrouz Shademan ◽  
Vahidreza Karamad ◽  
Alireza Nourazarian ◽  
Cigir Biray Avcı

Immunotherapy has become a prominent strategy for the treatment of cancer. A method that improves the immune system's ability to attack a tumor (Enhances antigen binding). Targeted killing of malignant cells by adoptive transfer of chimeric antigen receptor (CAR) T cells is a promising immunotherapy technique in the treatment of cancers. For this purpose, the patient's immune cells, with genetic engineering aid, are loaded with chimeric receptors that have particular antigen binding and activate cytotoxic T lymphocytes. That increases the effectiveness of immune cells and destroying cancer cells. This review discusses the basic structure and function of CAR-T cells and how antigenic targets are identified to treat different cancers and address the disadvantages of this treatment for cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Angeliki G. Vittoraki ◽  
Asimina Fylaktou ◽  
Katerina Tarassi ◽  
Zafeiris Tsinaris ◽  
Alexandra Siorenta ◽  
...  

Detection of alloreactive anti-HLA antibodies is a frequent and mandatory test before and after organ transplantation to determine the antigenic targets of the antibodies. Nowadays, this test involves the measurement of fluorescent signals generated through antibody–antigen reactions on multi-beads flow cytometers. In this study, in a cohort of 1,066 patients from one country, anti-HLA class I responses were analyzed on a panel of 98 different antigens. Knowing that the immune system responds typically to “shared” antigenic targets, we studied the clustering patterns of antibody responses against HLA class I antigens without any a priori hypothesis, applying two unsupervised machine learning approaches. At first, the principal component analysis (PCA) projections of intra-locus specific responses showed that anti-HLA-A and anti-HLA-C were the most distantly projected responses in the population with the anti-HLA-B responses to be projected between them. When PCA was applied on the responses against antigens belonging to a single locus, some already known groupings were confirmed while several new cross-reactive patterns of alloreactivity were detected. Anti-HLA-A responses projected through PCA suggested that three cross-reactive groups accounted for about 70% of the variance observed in the population, while anti-HLA-B responses were mainly characterized by a distinction between previously described Bw4 and Bw6 cross-reactive groups followed by several yet undocumented or poorly described ones. Furthermore, anti-HLA-C responses could be explained by two major cross-reactive groups completely overlapping with previously described C1 and C2 allelic groups. A second feature-based analysis of all antigenic specificities, projected as a dendrogram, generated a robust measure of allelic antigenic distances depicting bead-array defined cross reactive groups. Finally, amino acid combinations explaining major population specific cross-reactive groups were described. The interpretation of the results was based on the current knowledge of the antigenic targets of the antibodies as they have been characterized either experimentally or computationally and appear at the HLA epitope registry.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 611
Author(s):  
Wegene Borena ◽  
Janine Kimpel ◽  
Melanie Gierer ◽  
Annika Rössler ◽  
Lydia Riepler ◽  
...  

Serological assays that simultaneously detect antibodies to multiple targets of SARS-CoV-2 and to other structurally related coronaviruses provide a holistic picture of antibody response patterns. Well-validated multiplex immunoassays are scarce. Here, we evaluated the performance of an 11-plex serological assay capable of detecting antibodies directed to four antigenic targets of SARS-CoV-2 and to S1 proteins of other human pathogenic coronaviruses. We used 620 well-characterized sera (n = 458 seropositive and n = 110 seronegative for SARS-CoV-2 in the pre-SARS-CoV-2 era and n = 52 seronegative for SARS-CoV-2 in the era of SARS-CoV-2) as positive and negative standards. We calculated the sensitivity, specificity, as well as positive and negative predictive values, including a 95% confidence interval. The difference in mean fluorescence intensity (95% CI) was used to assess a potential cross-reaction between antibodies to SARS-CoV-2 and the other coronaviruses. The sensitivity (95% CI) of detecting anti-SARS-CoV-2 antibodies to four antigenic targets ranged from 83.4% (76.7–86.7) to 93.7% (91.0–95.7) and the specificity from 98.2% (93.6–99.8) to 100% (96.7–100). We observed no obvious cross-reaction between anti-SARS-CoV-2 antibodies and antibodies to the other coronaviruses except for SARS-CoV-1. The high sensitivity and specificity warrant a reliable utilization of the assay in population-based seroprevalence surveys or vaccine efficacy studies.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251956
Author(s):  
Mariana Lourenço Freire ◽  
Felipe Dutra Rêgo ◽  
Gláucia Cota ◽  
Marcelo Antônio Pascoal-Xavier ◽  
Edward Oliveira

Immunological tests may represent valuable tools for the diagnosis of human tegumentary leishmaniasis (TL) due to their simple execution, less invasive nature and potential use as a point-of-care test. Indeed, several antigenic targets have been used with the aim of improving the restricted scenario for TL-diagnosis. We performed a worldwide systematic review to identify antigenic targets that have been evaluated for the main clinical forms of TL, such as cutaneous (CL) and mucosal (ML) leishmaniasis. Included were original studies evaluating the sensitivity and specificity of immunological tests for human-TL, CL and/or ML diagnosis using purified or recombinant proteins, synthetic peptides or polyclonal or monoclonal antibodies to detect Leishmania-specific antibodies or antigens. The review methodology followed PRISMA guidelines and all selected studies were evaluated in accordance with QUADAS-2. Thirty-eight original studies from four databases fulfilled the selection criteria. A total of 79 antigens were evaluated for the detection of antibodies as a diagnostic for TL, CL and/or ML by ELISA. Furthermore, three antibodies were evaluated for the detection of antigen by immunochromatographic test (ICT) and immunohistochemistry (IHC) for CL-diagnosis. Several antigenic targets showed 100% of sensitivity and specificity, suggesting potential use for TL-diagnosis in its different clinical manifestations. However, a high number of proof-of-concept studies reinforce the need for further analysis aimed at verifying true diagnostic accuracy in clinical practice.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hamza Arshad Dar ◽  
Saba Ismail ◽  
Yasir Waheed ◽  
Sajjad Ahmad ◽  
Zubia Jamil ◽  
...  

AbstractMycobacteroides abscessus (Previously Mycobacterium abscessus) is an emerging microorganism of the newly defined genera Mycobacteroides that causes mainly skin and tissue diseases in humans. The recent availability of total 34 fully sequenced genomes of different strains belonging to this species has provided an opportunity to utilize this genomics data to gain novel insights and guide the development of specific antimicrobial therapies. In the present study, we collected collectively 34 complete genome sequences of M. abscessus from the NCBI GenBank database. Pangenome analysis was conducted on these genomes to understand the genetic diversity and to obtain proteins associated with its core genome. These core proteins were then subjected to various subtractive filters to identify potential antigenic targets that were subjected to multi-epitope vaccine design. Our analysis projected the open pangenome of M. abscessus containing 3443 core genes. After applying various stepwise filtration steps on the core proteins, a total of four potential antigenic targets were identified. Utilizing their constituent CD4 and CD8 T-cell epitopes, a multi-epitope based subunit vaccine was computationally designed. Sequence-based analysis as well as structural characterization revealed the immunological effectiveness of this designed vaccine. Further molecular docking, molecular dynamics simulation and binding free energy estimation with Toll-like receptor 2 indicated strong structural associations of the vaccine with the immune receptor. The promising results are encouraging and need to be validated by additional wet laboratory studies for confirmation.


2021 ◽  
Vol 10 (6) ◽  
pp. e18910615540
Author(s):  
Débora Regina Romualdo da Silva ◽  
Talita Carolina Bragança de Oliveira ◽  
Bárbara Braga Ferreira Marta ◽  
Carolina Beatriz Baptista ◽  
Maria Cecília Zonetti Bottaro ◽  
...  

Cryptosporidium spp. are opportunistic parasites with zoonotic potential transmitted by ingestion of contaminated water and food, the infection consists of severe diarrhea leading to the death of babies and immunocompromised individuals. In the veterinary, it can generate economic losses due to the death of calves, these animals being a possible source of transmission of the parasite. Nitazoxanide and halofuginone are the only drugs approved for treatment in humans and calves respectively, however there are restrictions on their use. There is still no vaccine against cryptosporidiosis in humans or animals and its development is a great challenge. Our objective with the present work was to write a systematic review of the literature addressing the progress of studies on vaccines against cryptosporidiosis. The recommended guidelines for RSL were used, with the aid of the StArt software (State of the Art through Systematic Rewiews). The research took place in the databases: Lilacs, PubMed, Scielo, Science Direct, Scopus, Embase and Medline. In 30% of the selected articles, the calves were the study animal and in 50% the mice; 40% of the studies were with vaccines derived from recombinant proteins and 30% of the research was aimed at inhibiting the parasite from entering cells and activating the host's protective immunity. So far, a vaccine with no proven efficacy or an ideal cost-benefit has been developed. Many candidate antigenic targets for a vaccine have been characterized, in addition to elucidating the immunogenicity mechanism of Cryptosporidium spp. in the infected individual. However, another antigenic targets for a vaccine can be searched in future studies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mark S. Pearson ◽  
Bemnet A. Tedla ◽  
Luke Becker ◽  
Rie Nakajima ◽  
Al Jasinskas ◽  
...  

Despite the enormous morbidity attributed to schistosomiasis, there is still no vaccine to combat the disease for the hundreds of millions of infected people. The anthelmintic drug, praziquantel, is the mainstay treatment option, although its molecular mechanism of action remains poorly defined. Praziquantel treatment damages the outermost surface of the parasite, the tegument, liberating surface antigens from dying worms that invoke a robust immune response which in some subjects results in immunologic resistance to reinfection. Herein we term this phenomenon Drug-Induced Vaccination (DIV). To identify the antigenic targets of DIV antibodies in urogenital schistosomiasis, we constructed a recombinant proteome array consisting of approximately 1,000 proteins informed by various secretome datasets including validated proteomes and bioinformatic predictions. Arrays were screened with sera from human subjects treated with praziquantel and shown 18 months later to be either reinfected (chronically infected subjects, CI) or resistant to reinfection (DIV). IgG responses to numerous antigens were significantly elevated in DIV compared to CI subjects, and indeed IgG responses to some antigens were completely undetectable in CI subjects but robustly recognized by DIV subjects. One antigen in particular, a cystatin cysteine protease inhibitor stood out as a unique target of DIV IgG, so recombinant cystatin was produced, and its vaccine efficacy assessed in a heterologous Schistosoma mansoni mouse challenge model. While there was no significant impact of vaccination with adjuvanted cystatin on adult worm numbers, highly significant reductions in liver egg burdens (45-55%, P<0.0001) and intestinal egg burdens (50-54%, P<0.0003) were achieved in mice vaccinated with cystatin in two independent trials. This study has revealed numerous antigens that are targets of DIV antibodies in urogenital schistosomiasis and offer promise as subunit vaccine targets for a drug-linked vaccination approach to controlling schistosomiasis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Leonardo P. Farias ◽  
Gillian M. Vance ◽  
Patricia S. Coulson ◽  
Juliana Vitoriano-Souza ◽  
Almiro Pires da Silva Neto ◽  
...  

The radiation-attenuated cercarial vaccine remains the gold standard for the induction of protective immunity against Schistosoma mansoni. Furthermore, the protection can be passively transferred to naïve recipient mice from multiply vaccinated donors, especially IFNgR KO mice. We have used such sera versus day 28 infection serum, to screen peptide arrays and identify likely epitopes that mediate the protection. The arrays encompassed 55 secreted or exposed proteins from the alimentary tract and tegument, the principal interfaces with the host bloodstream. The proteins were printed onto glass slides as overlapping 15mer peptides, reacted with primary and secondary antibodies, and reactive regions detected using an Agilent array scanner. Pep Slide Analyzer software provided a numerical value above background for each peptide from which an aggregate score could be derived for a putative epitope. The reactive regions of 26 proteins were mapped onto crystal structures using the CCP4 molecular graphics, to aid selection of peptides with the greatest accessibility and reactivity, prioritizing vaccine over infection serum. A further eight MEG proteins were mapped to regions conserved between family members. The result is a list of priority peptides from 44 proteins for further investigation in multiepitope vaccine constructs and as targets of monoclonal antibodies.


2020 ◽  
pp. jnnp-2020-325011 ◽  
Author(s):  
Ronan N McGinty ◽  
Adam Handel ◽  
Teresa Moloney ◽  
Archana Ramesh ◽  
Andrew Fower ◽  
...  

ObjectiveTo generate a score which clinically identifies surface-directed autoantibodies in adults with new-onset focal epilepsy, and evaluate the value of immunotherapy in this clinical setting.MethodsProspective clinical and autoantibody evaluations in a cohort of 219 consecutive patients with new-onset focal epilepsy.Results10.5% (23/219) of people with new-onset focal epilepsy had detectable serum autoantibodies to known or novel cell surface antigenic targets. 9/23 with autoantibodies were diagnosed with encephalitis, by contrast to 0/196 without autoantibodies (p<0.0001). Multivariate analysis identified six features which predicted autoantibody positivity (area under the curve=0.83): age ≥54 years, ictal piloerection, lowered self-reported mood, reduced attention, MRI limbic system changes and the absence of conventional epilepsy risk factors. 11/14 (79%) patients with detectable autoantibodies, but without encephalitis, showed excellent long-term outcomes (modified Rankin Score=0) despite no immunotherapy. These outcomes were superior to those of immunotherapy-treated patients with confirmed autoantibody-mediated encephalitis (p<0.05).ConclusionsSeizure semiology, cognitive and mood phenotypes, alongside inflammatory investigation findings, aid the identification of surface autoantibodies among unselected people with new-onset focal epilepsy. The excellent immunotherapy-independent outcomes of autoantibody-positive patients without encephalitis suggests immunotherapy administration should be guided by clinical features of encephalitis, rather than autoantibody positivity. Our findings suggest that, in this cohort, immunotherapy-responsive seizure syndromes with autoantibodies largely fall under the umbrella of autoimmune encephalitis.


Sign in / Sign up

Export Citation Format

Share Document