Effect of physical training on parathyroid hormone and bone turnover marker profile in relation to vitamin D supplementation in soccer players

Author(s):  
Michał Brzeziański ◽  
Monika Migdalska-Sęk ◽  
Michał Stuss ◽  
Zbigniew Jastrzębski ◽  
Łukasz Radzimiński ◽  
...  
2008 ◽  
Vol 100 (1) ◽  
pp. 197-207 ◽  
Author(s):  
Rikke Andersen ◽  
Christian Mølgaard ◽  
Lene T. Skovgaard ◽  
Christine Brot ◽  
Kevin D. Cashman ◽  
...  

Severe vitamin D deficiency is common among Muslim immigrants. The dose necessary to correct the deficiency and its consequence for bone health are not known for immigrants. The aim was to assess the effect of relatively low dosages of supplemental vitamin D on vitamin D and bone status in Pakistani immigrants. This 1-year-long randomised double-blinded placebo-controlled intervention with vitamin D3 (10 and 20 μg/d) included girls (10·1–14·7 years), women (18·1–52·7 years) and men (17·9–63·5 years) of Pakistani origin living in Denmark. The main endpoints were serum 25-hydroxyvitamin D (S-25OHD), parathyroid hormone, bone turnover markers and bone mass. The study showed that supplementation with 10 and 20 μg vitamin D3 per d increased S-25OHD concentrations similarly in vitamin D-deficient Pakistani women (4-fold), and that 10 μg increased S-25OHD concentrations 2-fold and 20 μg 3-fold in Pakistani men. S-25OHD concentrations increased at 6 months and were stable thereafter. Baseline S-25OHD concentrations tended to be lower in girls and women than in men; females achieved about 46 nmol/l and men 55 nmol/l after supplementation. Serum intact parathyroid hormone concentrations decreased at 6 months, but there was no significant effect of the intervention on bone turnover markers and dual-energy X-ray absorptiometry measurements of the whole body and lumbar spine.


2016 ◽  
Author(s):  
Terry J Aspray ◽  
Roger M Francis ◽  
Elaine McColl ◽  
Thomas Chadwick ◽  
Elaine Stamp ◽  
...  

2020 ◽  
Vol 21 (18) ◽  
pp. 6846 ◽  
Author(s):  
Chia-Yu Hsu ◽  
Li-Ru Chen ◽  
Kuo-Hu Chen

Chronic kidney disease (CKD) is associated with the development of mineral bone disorder (MBD), osteoporosis, and fragility fractures. Among CKD patients, adynamic bone disease or low bone turnover is the most common type of renal osteodystrophy. The consequences of CKD-MBD include increased fracture risk, greater morbidity, and mortality. Thus, the goal is to prevent the occurrences of fractures by means of alleviating CKD-induced MBD and treating subsequent osteoporosis. Changes in mineral and humoral metabolism as well as bone structure develop early in the course of CKD. CKD-MBD includes abnormalities of calcium, phosphorus, PTH, and/or vitamin D; abnormalities in bone turnover, mineralization, volume, linear growth, or strength; and/or vascular or other soft tissue calcification. In patients with CKD-MBD, using either DXA or FRAX to screen fracture risk should be considered. Biomarkers such as bALP and iPTH may assist to assess bone turnover. Before initiating an antiresorptive or anabolic agent to treat osteoporosis in CKD patients, lifestyle modifications, such as exercise, calcium, and vitamin D supplementation, smoking cessation, and avoidance of excessive alcohol intake are important. Managing hyperphosphatemia and SHPT are also crucial. Understanding the complex pathogenesis of CKD-MBD is crucial in improving one’s short- and long-term outcomes. Treatment strategies for CKD-associated osteoporosis should be patient-centered to determine the type of renal osteodystrophy. This review focuses on the mechanism, evaluation and management of patients with CKD-MBD. However, further studies are needed to explore more details regarding the underlying pathophysiology and to assess the safety and efficacy of agents for treating CKD-MBD.


Author(s):  
Yogiraj Vaijanathrao Chidre ◽  
Amir Babansab Shaikh

Background: Osteoporosis is a common age related problem especially in women, with a consequent increase in bone fragility and susceptibility to fracture. Apart from Calcium, another nutrient that plays an important role in the mineralization of skeleton in Vitamin D. Osteocalcin, which is produced primarily by osteoblasts during bone formation, is considered to be one of the markers for osteoporosis.Methods: 314 women above the age of 40 were included into the study. A thorough physical and clinical examination, assessment of vital parameters, anthropometry evaluation was done for all patients. Bone mineral density was calculated using central DXA osteodensitometer at lumbar spine L1-L4, hip and ultradistal radius (in some cases.). Blood samples were taken for the detection of ionized calcium, phosphorus, alkaline phosphatase, 25hydroxivitamin D (25 ODH) and serum parathyroid hormone (PTH) by chemiluminiscent assay. Bone markers such as osteocalcin were measured as required.Results: Out of the 314 women attending our OPD, 96 of them were diagnosed as having osteoporosis. 24 out of them had fragility fractures, mainly of the hip, and 82 had ostepenia. Elevated levels of calcium (8.96 mg/dl), parathyroid hormone (58.76 pg/ml) and osteocalcin (24.46 ng/ml) were observed. Vitamin D deficiency of ≤ 20 was seen in 59 (63%) of the cases, insufficient in 23 (24%) and only 12 (13%) of these women had normal Vitamin D levels.Conclusions: Osteocalcin is a promising marker for the detection of osteoporosis. There is a considerable Vitamin D deficiency among the women with osteoporosis, and it is under-treated. It is essential to provide Vitamin D supplementation to these women especially those who are at high risk for fragility fractures.


2014 ◽  
Vol 17 ◽  
pp. 19568 ◽  
Author(s):  
Amanda Samarawickrama ◽  
Sophie Jose ◽  
Caroline Sabin ◽  
Karen Walker-Bone ◽  
Martin Fisher ◽  
...  

2018 ◽  
Vol 21 (2) ◽  
pp. 12-22 ◽  
Author(s):  
Lilit V. Egshatyan ◽  
Natalya G. Mokrisheva

Background: secondary hyperparathyroidism (SHPT) is an early complication of chronic kidney disease (CKD). Maintaining the level of 25(OH)D and parathyroid hormone concentrations in the target range reduce its associated complications (fractures and cardiovascular calcification). Aims: to examine the effectiveness of vitamin D supplementation and selective vitamin D receptor agonists treatment on SHPT in CKD. Material and methods: prospective observational study to evaluate the efficacy and safety of vitamin D therapy SHPT in 54 in patients with CKD. The first phase (24 weeks) – treatment of suboptimal 25-hydroxycalciferol (25(OH)D) levels. The second (16 weeks) – treatment colecalciferol-resistant SHPT by combination of cholecalciferol with paricalcitol. Blood samples were taken to assess parathyroid hormone (PTH), 25(OH)D, creatinine, calcium, phosphorus levels and calcium excretion. Results: After 8 weeks of cholecalciferol treatment all patients achieved 25(OH)D levels above 20 ng/ml, however 78% of patients still had SHPT. After 16 weeks, the decrease of PTH was achieved in all patients, but significantly only in patients with CKD 2 (19.2%, p< 0.01) and 3 (31%, p <0.05), compared with CKD 4 (17%, p >0.05). After 24 weeks of therapy, PTH normalized in all patients with CKD 2, in 15 (79%) with CKD 3 and in 9 (50%) patients with CKD 4. Cholecalciferol treatment resulted in a substantial increase in 25(OH)D levels with minimal or no impact on calcium, phosphorus levels and kidney function. After 24 weeks we initiated combination therapy (cholecalciferol and paricalcitol) for patients with colecalciferol-resistant SHPT (n=13). PTH levels decreased from 149.1±13.4 to 118.2±14.1 pg/ml at 8 weeks, and to 93.1±9.7 pg/ml (p <0.05) at 16 weeks of treatment. No significant differences in serum calcium, phosphorus or urinary calcium levels. Normalization of PTH was achieved in all patients with CKD 3 and in 8 patients with stage 4. One patient with CKD 4 needed an increase in paricalcitol dose. Conclusion: Cholecalciferol can be used in correcting vitamin D deficiency in patients with all stages of CKD, however, its effectiveness in reducing PTH in stage 4 is limited. Selective analogs, such as paricalcitol, were well-tolerated and effectively decreased PTH levels.


Sign in / Sign up

Export Citation Format

Share Document