scholarly journals https://jusst.org/developing-the-rural-economy-structure-in-agriculture-towards-the-betterment-of-indias-economy/

Author(s):  
Amit Doegar ◽  
◽  
Maitreyee Dutta ◽  
Gaurav Kumar ◽  
◽  
...  

In the present scenario, one of the threats of trust on images for digital and online applications as well as on social media. Individual’s reputation can be turnish using misinformation or manipulation in the digital images. Image forgery detection is an approach for detection and localization of forged components in the image which is manipulated. For effective image forgery detection, an adequate number of features are required which can be accomplished by a deep learning model, which does not require manual feature engineering or handcraft feature approaches. In this paper we have implemented GoogleNet deep learning model to extract the image features and employ Random Forest machine learning algorithm to detect whether the image is forged or not. The proposed approach is implemented on the publicly available benchmark dataset MICC-F220 with k-fold cross validation approach to split the dataset into training and testing dataset and also compared with the state-of-the-art approaches.

2021 ◽  
Author(s):  
Jae-Seung Yun ◽  
Jaesik Kim ◽  
Sang-Hyuk Jung ◽  
Seon-Ah Cha ◽  
Seung-Hyun Ko ◽  
...  

Objective: We aimed to develop and evaluate a non-invasive deep learning algorithm for screening type 2 diabetes in UK Biobank participants using retinal images. Research Design and Methods: The deep learning model for prediction of type 2 diabetes was trained on retinal images from 50,077 UK Biobank participants and tested on 12,185 participants. We evaluated its performance in terms of predicting traditional risk factors (TRFs) and genetic risk for diabetes. Next, we compared the performance of three models in predicting type 2 diabetes using 1) an image-only deep learning algorithm, 2) TRFs, 3) the combination of the algorithm and TRFs. Assessing net reclassification improvement (NRI) allowed quantification of the improvement afforded by adding the algorithm to the TRF model. Results: When predicting TRFs with the deep learning algorithm, the areas under the curve (AUCs) obtained with the validation set for age, sex, and HbA1c status were 0.931 (0.928-0.934), 0.933 (0.929-0.936), and 0.734 (0.715-0.752), respectively. When predicting type 2 diabetes, the AUC of the composite logistic model using non-invasive TRFs was 0.810 (0.790-0.830), and that for the deep learning model using only fundus images was 0.731 (0.707-0.756). Upon addition of TRFs to the deep learning algorithm, discriminative performance was improved to 0.844 (0.826-0.861). The addition of the algorithm to the TRFs model improved risk stratification with an overall NRI of 50.8%. Conclusions: Our results demonstrate that this deep learning algorithm can be a useful tool for stratifying individuals at high risk of type 2 diabetes in the general population.


2021 ◽  
Vol 11 (16) ◽  
pp. 7355
Author(s):  
Zhiheng Xu ◽  
Xiong Ding ◽  
Kun Yin ◽  
Ziyue Li ◽  
Joan A. Smyth ◽  
...  

Tick species are considered the second leading vector of human diseases. Different ticks can transmit a variety of pathogens that cause various tick-borne diseases (TBD), such as Lyme disease. Currently, it remains a challenge to diagnose Lyme disease because of its non-specific symptoms. Rapid and accurate identification of tick species plays an important role in predicting potential disease risk for tick-bitten patients, and ensuring timely and effective treatment. Here, we developed, optimized, and tested a smartphone-based deep learning algorithm (termed “TickPhone app”) for tick identification. The deep learning model was trained by more than 2000 tick images and optimized by different parameters, including normal sizes of images, deep learning architectures, image styles, and training–testing dataset distributions. The optimized deep learning model achieved a training accuracy of ~90% and a validation accuracy of ~85%. The TickPhone app was used to identify 31 independent tick species and achieved an accuracy of 95.69%. Such a simple and easy-to-use TickPhone app showed great potential to estimate epidemiology and risk of tick-borne disease, help health care providers better predict potential disease risk for tick-bitten patients, and ultimately enable timely and effective medical treatment for patients.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jonathan Stubblefield ◽  
Mitchell Hervert ◽  
Jason L. Causey ◽  
Jake A. Qualls ◽  
Wei Dong ◽  
...  

AbstractOne of the challenges with urgent evaluation of patients with acute respiratory distress syndrome (ARDS) in the emergency room (ER) is distinguishing between cardiac vs infectious etiologies for their pulmonary findings. We conducted a retrospective study with the collected data of 171 ER patients. ER patient classification for cardiac and infection causes was evaluated with clinical data and chest X-ray image data. We show that a deep-learning model trained with an external image data set can be used to extract image features and improve the classification accuracy of a data set that does not contain enough image data to train a deep-learning model. An analysis of clinical feature importance was performed to identify the most important clinical features for ER patient classification. The current model is publicly available with an interface at the web link: http://nbttranslationalresearch.org/.


2018 ◽  
Vol 36 (4_suppl) ◽  
pp. 266-266
Author(s):  
Sunyoung S. Lee ◽  
Jin Cheon Kim ◽  
Jillian Dolan ◽  
Andrew Baird

266 Background: The characteristic histological feature of pancreatic adenocarcinoma (PAD) is extensive desmoplasia alongside leukocytes and cancer-associated fibroblasts. Desmoplasia is a known barrier to the absorption and penetration of therapeutic drugs. Stromal cells are key elements for a clinical response to chemotherapy and immunotherapy, but few models exist to analyze the spatial and architectural elements that compose the complex tumor microenvironment in PAD. Methods: We created a deep learning algorithm to analyze images and quantify cells and fibrotic tissue. Histopathology slides of PAD patients (pts) were then used to automate the recognition and mapping of adenocarcinoma cells, leukocytes, fibroblasts, and degree of desmoplasia, defined as the ratio of the area of fibrosis to that of the tumor gland. This information was correlated with mutational burden, defined as mutations (mts) per megabase (mb) of each pt. Results: The histopathology slides (H&E stain) of 126 pts were obtained from The Cancer Genome Atlas (TCGA) and analyzed with the deep learning model. Pt with the largest mutational burden (733 mts/mb, n = 1 pt) showed the largest number of leukocytes (585/mm2). Those with the smallest mutational burden (0 mts/mb, n = 16 pts) showed the fewest leukocytes (median, 14/mm2). Mutational burden was linearly proportional to the number of leukocytes (R2 of 0.7772). The pt with a mutational burden of 733 was excluded as an outlier. No statistically significant difference in the number of fibroblasts, degree of desmoplasia, or thickness of the first fibrotic layer (the smooth muscle actin-rich layer outside of the tumor gland), was found among pts of varying mutational burden. The median distance from a tumor gland to a leukocyte was inversely proportional to the number of leukocytes in a box of 1 mm2 with a tumor gland at the center. Conclusions: A deep learning model enabled automated quantification and mapping of desmoplasia, stromal and malignant cells, revealing the spatial and architectural relationship of these cells in PAD pts with varying mutational burdens. Further biomarker driven studies in the context of immunotherapy and anti-fibrosis are warranted.


2020 ◽  
Vol 79 (25-26) ◽  
pp. 18221-18243
Author(s):  
Faten Maher Al_Azrak ◽  
Ahmed Sedik ◽  
Moawad I. Dessowky ◽  
Ghada M. El Banby ◽  
Ashraf A. M. Khalaf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document