scholarly journals Image Segmentation By Using Thresholding Techniques For Medical Images

2016 ◽  
Vol 6 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Senthilkumaran N ◽  
Vaithegi S
Algorithms ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 144
Author(s):  
Yuexing Han ◽  
Xiaolong Li ◽  
Bing Wang ◽  
Lu Wang

Image segmentation plays an important role in the field of image processing, helping to understand images and recognize objects. However, most existing methods are often unable to effectively explore the spatial information in 3D image segmentation, and they neglect the information from the contours and boundaries of the observed objects. In addition, shape boundaries can help to locate the positions of the observed objects, but most of the existing loss functions neglect the information from the boundaries. To overcome these shortcomings, this paper presents a new cascaded 2.5D fully convolutional networks (FCNs) learning framework to segment 3D medical images. A new boundary loss that incorporates distance, area, and boundary information is also proposed for the cascaded FCNs to learning more boundary and contour features from the 3D medical images. Moreover, an effective post-processing method is developed to further improve the segmentation accuracy. We verified the proposed method on LITS and 3DIRCADb datasets that include the liver and tumors. The experimental results show that the performance of the proposed method is better than existing methods with a Dice Per Case score of 74.5% for tumor segmentation, indicating the effectiveness of the proposed method.


2016 ◽  
Vol 78 (4-3) ◽  
Author(s):  
Hussain Rahman ◽  
Fakhrud Din ◽  
Sami ur Rahmana ◽  
Sehatullah Sehatullah

Region-growing based image segmentation techniques, available for medical images, are reviewed in this paper. In digital image processing, segmentation of humans' organs from medical images is a very challenging task. A number of medical image segmentation techniques have been proposed, but there is no standard automatic algorithm that can generally be used to segment a real 3D image obtained in daily routine by the clinicians. Our criteria for the evaluation of different region-growing based segmentation algorithms are: ease of use, noise vulnerability, effectiveness, need of manual initialization, efficiency, computational complexity, need of training, information used, and noise vulnerability. We test the common region-growing algorithms on a set of abdominal MRI scans for the aorta segmentation. The evaluation results of the segmentation algorithms show that region-growing techniques can be a better choice for segmenting an object of interest from medical images.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Lin Teng ◽  
Hang Li ◽  
Shahid Karim

Medical image segmentation is one of the hot issues in the related area of image processing. Precise segmentation for medical images is a vital guarantee for follow-up treatment. At present, however, low gray contrast and blurred tissue boundaries are common in medical images, and the segmentation accuracy of medical images cannot be effectively improved. Especially, deep learning methods need more training samples, which lead to time-consuming process. Therefore, we propose a novelty model for medical image segmentation based on deep multiscale convolutional neural network (CNN) in this article. First, we extract the region of interest from the raw medical images. Then, data augmentation is operated to acquire more training datasets. Our proposed method contains three models: encoder, U-net, and decoder. Encoder is mainly responsible for feature extraction of 2D image slice. The U-net cascades the features of each block of the encoder with those obtained by deconvolution in the decoder under different scales. The decoding is mainly responsible for the upsampling of the feature graph after feature extraction of each group. Simulation results show that the new method can boost the segmentation accuracy. And, it has strong robustness compared with other segmentation methods.


2013 ◽  
Vol 760-762 ◽  
pp. 1552-1555 ◽  
Author(s):  
Jing Jing Wang ◽  
Xiao Wei Song ◽  
Mei Fang

Image segmentation in medical image processing has been extensively used which has also been applied in different fields of medicine to assist doctors to make the correct judgment and grasp the patient's condition. However, nowadays there are no image threshold segmentation techniques that can be applied to all of the medical images; so it has became a challenging problem. In this paper, it applies a method of identifying edge of the tissues and organs to recognize its contour, and then selects a number of seed points on the contour range to locate the cancer area by region growing. And finally, the result has demonstrated that this method can mostly locate the cancer area accurately.


2018 ◽  
Vol 7 (3.3) ◽  
pp. 603
Author(s):  
Dr A. Meenakabilan ◽  
Agathiyan K

Medical images are known to capture the human body in both anatomical and functional view. These images are interpreted with expert domain for clinical analysis. Here, the selection of image sample plays a fundamental role. However, doctors need to manually obtain this process. But, in order to get similarity between the samples automation is definitely required as it reduces the computation time. So, the automation process should be knowledge based to get better results. This paper highlights the knowledge based automation of medical image sample analysis. It presents a significant assessment of PET – SFCM approach for the segmentation of functional medical images which is considered as the value of neighboring pixels in spatial correlation. Here, the proposed method is used to apply the decision support strategy to identify the effective samples from the huge data collection. The proposed algorithm is implemented in Matlab 7.0. The obtained results were analyzed and compared with other two clustering approaches known as K-Means and Fuzzy C-Means. The resultant images encourage the identification and an evaluation of treatment response in a set of oncological constraints.  


Sign in / Sign up

Export Citation Format

Share Document