scholarly journals Graph Algorithm to Find Core Periphery Structures using Mutual K-nearest Neighbors

Author(s):  
Divya Sardana ◽  
Raj Bhatnagar Bhatnagar

Core periphery structures exist naturally in many complex networks in the real-world like social, economic, biological and metabolic networks. Most of the existing research efforts focus on the identification of a meso scale structure called community structure. Core periphery structures are another equally important meso scale property in a graph that can help to gain deeper insights about the relationships between different nodes. In this paper, we provide a definition of core periphery structures suitable for weighted graphs. We further score and categorize these relationships into different types based upon the density difference between the core and periphery nodes. Next, we propose an algorithm called CP-MKNN (Core Periphery-Mutual K Nearest Neighbors) to extract core periphery structures from weighted graphs using a heuristic node affinity measure called Mutual K-nearest neighbors (MKNN). Using synthetic and real-world social and biological networks, we illustrate the effectiveness of developed core periphery structures.

2019 ◽  
Vol 9 (1) ◽  
pp. 226-242
Author(s):  
Nesma Settouti ◽  
Khalida Douibi ◽  
Mohammed El Amine Bechar ◽  
Mostafa El Habib Daho ◽  
Meryem Saidi

AbstractOver the last few years, Multi-label classification has received significant attention from researchers to solve many issues in many fields. The manual annotation of available datasets is time-consuming and need a huge effort from the expert, especially for Multi-label applications in which each example of learning is associated with many labels at once. To overcome the manual annotation drawback, and to take advantages from the large amounts of unlabeled data, many semi-supervised approaches were proposed in the literature to give more sophisticated and fast solutions to support the automatic labeling of the unlabeled data. In this paper, a Collaborative Bagged Multi-label K-Nearest-Neighbors (CobMLKNN) algorithm is proposed, that extend the co-Training paradigm by a Multi-label K-Nearest-Neighbors algorithm. Experiments on ten real-world Multi-label datasets show the effectiveness of CobMLKNN algorithm to improve the performance of MLKNN to learn from a small number of labeled samples by exploiting unlabeled samples.


2019 ◽  
Vol 49 (7) ◽  
pp. 775-787 ◽  
Author(s):  
Francisco Mauro ◽  
Bryce Frank ◽  
Vicente J. Monleon ◽  
Hailemariam Temesgen ◽  
Kevin R. Ford

Diameter distributions and tree-lists provide information about forest stocks disaggregated by size and species and are key for informing forest management. Diameter distributions and tree-lists are multivariate responses, which makes the evaluation of methods for their prediction reliant on the use of dissimilarity metrics to summarize differences between observations and predictions. We compared four strategies for selection of k nearest neighbors (k-NN) methods to predict diameter distributions and tree-lists using LiDAR and stand-level auxiliary data and analyzed the effect of the k-NN distance and number of neighbors in the performance of the predictions. Strategies differed by the dissimilarity metric used to search for optimal k-NN configurations and the presence or absence of post-stratification. We also analyzed how alternative k-NN configurations ranked when tree-lists were aggregated using different DBH classes and species groupings. For all dissimilarity metrics, k-NN configurations using random-forest distance and three or more neighbors provided the best results. Rankings of k-NN configurations based on different dissimilarity metrics were relatively insensitive to changes on the width of the DBH classes and the definition of the species groups. The selection of the k-NN methods was clearly dependent on the choice of the dissimilarity metric. Further research is needed to find suitable ways to define dissimilarity metrics that reflect how forest managers evaluate differences between predicted and observed tree-lists and diameter distributions.


2020 ◽  
Author(s):  
Xiaoning Yuan ◽  
Hang Yu ◽  
Jun Liang ◽  
Bing Xu

Abstract Recently the density peaks clustering algorithm (dubbed as DPC) attracts lots of attention. The DPC is able to quickly find cluster centers and complete clustering tasks. And the DPC is suitable for many clustering tasks. However, the cutoff distance 𝑑𝑑𝑐𝑐 is depends on human experience which will greatly affect the clustering results. In addition, the selection of cluster centers requires manual participation which will affect the clustering efficiency. In order to solve these problem, we propose a density peaks clustering algorithm based on K nearest neighbors with adaptive merging strategy (dubbed as KNN-ADPC). We propose a clusters merging strategy to automatically aggregate the over-segmented clusters. Additionally, the K nearest neighbors is adopted to divide points more reasonably. The KNN-ADPC only has one parameter and the clustering task can be conducted automatically without human involvement. The experiment results on artificial and real-world datasets prove the higher accuracy of KNN-ADPC compared with DBSCAN, K-means++, DPC and DPC-KNN.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 779
Author(s):  
Ruriko Yoshida

A tropical ball is a ball defined by the tropical metric over the tropical projective torus. In this paper we show several properties of tropical balls over the tropical projective torus and also over the space of phylogenetic trees with a given set of leaf labels. Then we discuss its application to the K nearest neighbors (KNN) algorithm, a supervised learning method used to classify a high-dimensional vector into given categories by looking at a ball centered at the vector, which contains K vectors in the space.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 1020
Author(s):  
Mohamed Chiheb Ben Nasr ◽  
Sofia Ben Jebara ◽  
Samuel Otis ◽  
Bessam Abdulrazak ◽  
Neila Mezghani

This paper has two objectives: the first is to generate two binary flags to indicate useful frames permitting the measurement of cardiac and respiratory rates from Ballistocardiogram (BCG) signals—in fact, human body activities during measurements can disturb the BCG signal content, leading to difficulties in vital sign measurement; the second objective is to achieve refined BCG signal segmentation according to these activities. The proposed framework makes use of two approaches: an unsupervised classification based on the Gaussian Mixture Model (GMM) and a supervised classification based on K-Nearest Neighbors (KNN). Both of these approaches consider two spectral features, namely the Spectral Flatness Measure (SFM) and Spectral Centroid (SC), determined during the feature extraction step. Unsupervised classification is used to explore the content of the BCG signals, justifying the existence of different classes and permitting the definition of useful hyper-parameters for effective segmentation. In contrast, the considered supervised classification approach aims to determine if the BCG signal content allows the measurement of the heart rate (HR) and the respiratory rate (RR) or not. Furthermore, two levels of supervised classification are used to classify human-body activities into many realistic classes from the BCG signal (e.g., coughing, holding breath, air expiration, movement, et al.). The first one considers frame-by-frame classification, while the second one, aiming to boost the segmentation performance, transforms the frame-by-frame SFM and SC features into temporal series which track the temporal variation of the measures of the BCG signal. The proposed approach constitutes a novelty in this field and represents a powerful method to segment BCG signals according to human body activities, resulting in an accuracy of 94.6%.


Sign in / Sign up

Export Citation Format

Share Document