scholarly journals Low-Complexity Big Video Data Recording Algorithms for Urban Surveillance Systems

Author(s):  
Ling Hu ◽  
Qiang Ni
2016 ◽  
Vol 12 (4) ◽  
pp. 45-62 ◽  
Author(s):  
Reza Mohammadi ◽  
Reza Javidan

In applications such as video surveillance systems, cameras transmit video data streams through network in which quality of received video should be assured. Traditional IP based networks cannot guarantee the required Quality of Service (QoS) for such applications. Nowadays, Software Defined Network (SDN) is a popular technology, which assists network management using computer programs. In this paper, a new SDN-based video surveillance system infrastructure is proposed to apply desire traffic engineering for practical video surveillance applications. To keep the quality of received videos adaptively, usually Constraint Shortest Path (CSP) problem is used which is a NP-complete problem. Hence, heuristic algorithms are suitable candidate for solving such problem. This paper models streaming video data on a surveillance system as a CSP problem, and proposes an artificial bee colony (ABC) algorithm to find optimal solution to manage the network adaptively and guarantee the required QoS. The simulation results show the effectiveness of the proposed method in terms of QoS metrics.


Algorithms ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 130 ◽  
Author(s):  
Dinh Trieu Duong ◽  
Huy Phi Cong ◽  
Xiem Hoang Van

Distributed video coding (DVC) is an attractive and promising solution for low complexity constrained video applications, such as wireless sensor networks or wireless surveillance systems. In DVC, visual quality consistency is one of the most important issues to evaluate the performance of a DVC codec. However, it is the fact that the quality of the decoded frames that is achieved in most recent DVC codecs is not consistent and it is varied with high quality fluctuation. In this paper, we propose a novel DVC solution named Joint exploration model based DVC (JEM-DVC) to solve the problem, which can provide not only higher performance as compared to the traditional DVC solutions, but also an effective scheme for the quality consistency control. We first employ several advanced techniques that are provided in the Joint exploration model (JEM) of the future video coding standard (FVC) in the proposed JEM-DVC solution to effectively improve the performance of JEM-DVC codec. Subsequently, for consistent quality control, we propose two novel methods, named key frame quantization (KF-Q) and Wyner-Zip frame quantization (WZF-Q), which determine the optimal values of the quantization parameter (QP) and quantization matrix (QM) applied for the key and WZ frame coding, respectively. The optimal values of QP and QM are adaptively controlled and updated for every key and WZ frames to guarantee the consistent video quality for the proposed codec unlike the conventional approaches. Our proposed JEM-DVC is the first DVC codec in literature that employs the JEM coding technique, and then all of the results that are presented in this paper are new. The experimental results show that the proposed JEM-DVC significantly outperforms the relevant DVC benchmarks, notably the DISCOVER DVC and the recent H.265/HEVC based DVC, in terms of both Peak signal-to-noise ratio (PSNR) performance and consistent visual quality.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2932 ◽  
Author(s):  
Jose Balsa ◽  
Tomás Domínguez-Bolaño ◽  
Óscar Fresnedo ◽  
José A. García-Naya ◽  
Luis Castedo

An analog joint source-channel coding (JSCC) system designed for the transmission of still images is proposed and its performance is compared to that of two digital alternatives which differ in the source encoding operation: Joint Photographic Experts Group (JPEG) and JPEG without entropy coding (JPEGw/oEC), respectively, both relying on an optimized channel encoder–modulator tandem. Apart from a visual comparison, the figures of merit considered in the assessment are the structural similarity (SSIM) index and the time required to transmit an image through additive white Gaussian noise (AWGN) and Rayleigh channels. This work shows that the proposed analog system exhibits a performance similar to that of the digital scheme based on JPEG compression with a noticeable better visual degradation to the human eye, a lower computational complexity, and a negligible delay. These results confirm the suitability of analog JSCC for the transmission of still images in scenarios with severe constraints on power consumption, computational capabilities, and for real-time applications. For these reasons the proposed system is a good candidate for surveillance systems, low-constrained devices, Internet of things (IoT) applications, etc.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 891 ◽  
Author(s):  
Jinsu Kim ◽  
Namje Park

Closed-circuit television (CCTV) and video surveillance systems (VSSs) are becoming increasingly more common each year to help prevent incidents/accidents and ensure the security of public places and facilities. The increased presence of VSS is also increasing the number of per capita exposures to CCTV cameras. To help protect the privacy of the exposed objects, attention is being drawn to technologies that utilize intelligent video surveillance systems (IVSSs). IVSSs execute a wide range of surveillance duties—from simple identification of objects in the recorded video data, to understanding and identifying the behavioral patterns of objects and the situations at the incident/accident scenes, as well as the processing of video information to protect the privacy of the recorded objects against leakage. Besides, the recorded privacy information is encrypted and recorded using blockchain technology to prevent forgery of the image. The technology herein proposed (the “proposed mechanism”) is implemented to a VSS, where the mechanism converts the original visual information recorded on a VSS into a similarly constructed image information, so that the original information can be protected against leakage. The face area extracted from the image information is recorded in a separate database, allowing the creation of a restored image that is in perfect symmetry with the original image for images with virtualized face areas. Specifically, the main section of this study proposes an image modification mechanism that inserts a virtual face image that closely matches a predetermined similarity and uses a blockchain as the storage area.


2018 ◽  
Vol 2018 ◽  
pp. 1-22
Author(s):  
Pongsagorn Chalearnnetkul ◽  
Nikom Suvonvorn

Vision-based action recognition encounters different challenges in practice, including recognition of the subject from any viewpoint, processing of data in real time, and offering privacy in a real-world setting. Even recognizing profile-based human actions, a subset of vision-based action recognition, is a considerable challenge in computer vision which forms the basis for an understanding of complex actions, activities, and behaviors, especially in healthcare applications and video surveillance systems. Accordingly, we introduce a novel method to construct a layer feature model for a profile-based solution that allows the fusion of features for multiview depth images. This model enables recognition from several viewpoints with low complexity at a real-time running speed of 63 fps for four profile-based actions: standing/walking, sitting, stooping, and lying. The experiment using the Northwestern-UCLA 3D dataset resulted in an average precision of 86.40%. With the i3DPost dataset, the experiment achieved an average precision of 93.00%. With the PSU multiview profile-based action dataset, a new dataset for multiple viewpoints which provides profile-based action RGBD images built by our group, we achieved an average precision of 99.31%.


Author(s):  
Yong-Hua Xiong ◽  
◽  
Shao-Yun Wan ◽  
Yong He ◽  
Dan Su

Cloud-based video surveillance systems, as a new cloud computing service model, are an emerging research topic, both at home and abroad. Current research is mainly focused on exploring applications of the system. This paper proposes a design and implementation method for cloud-based video surveillance systems using the characteristics of cloud computing, such as parallel computing, large storage space, and easy expandability. The system architecture and function modules are built, and a prototype cloud-based video surveillance system is established in a campus network using key technologies, including virtual machine task access control, video-data distributed storage, and database-active communicationmethods. Using the system, the user is able to place a webcam in a location that requires monitoring so that video surveillance can be achieved, and video data can be viewed through a browser. The system has the following advantages: low investment and maintenance cost, high portability, easily extendable, superior data security, and excellent sharing. As a private cloud server in the campus network, the system is able to not only provide convenient video surveillance services, but it can also be an excellent practical experimental platform for cloud computing-related research, which carries outstanding application value.


2015 ◽  
Vol 744-746 ◽  
pp. 1990-1994
Author(s):  
Fu Ju Liu ◽  
Fu Li ◽  
Xiao Hu

Based on CIDAS's resources of accident video data recording vehicles and pedestrians, this paper focuses on utilizing video image based calculating methods to research on application of pedestrian throw distance formula in GA/T643-2006.Our study shows that the results calculated from the pedestrian throw distance formula are partly inaccurate compared with actual car speed in cases that pedestrians are thrown after first collision with cars, and barely accurate to reflect the actual car speed in cases that pedestrians are thrown after second collision with cars. Therefore, it requires further adjustments on parameters identification and application scope of the pedestrian throw distance formula.


Sign in / Sign up

Export Citation Format

Share Document