scholarly journals Dual Band GNSS Antenna Phase Center Characterization for Automotive Applications

2021 ◽  
Vol 7 (4) ◽  
pp. 1-19
Author(s):  
Ran Liu and ◽  
Daniel N. Aloi

High-accuracy Global Navigation Satellite System (GNSS) positioning is a prospective technology that will be used in future automotive navigation systems. This system will be a composite of the United States' Global Positioning System (GPS), the Russian Federation's Global Orbiting Navigation Satellite System (GLONASS), China Beidou Navigation Satellite System (BDS) and the European Union’s Galileo. The major improvement in accuracy and precision is based on (1) multiband signal transmitting, (2) carrier phase correction, (3) Real Time Kinematic (RTK). Due to the size and high-cost of today’s survey-grade antenna solutions, this kind of technology is difficult to use widely in the automotive sector. In this paper, a low-cost small size dual-band ceramic GNSS patch antenna is presented from design to real sample. A further study of this patch antenna illustrates the absolute phase center variation measured in an indoor range to achieve a received signal phase error correction. In addition, this low-cost antenna solution is investigated when integrated into a standard multi-band automotive antenna product. This product is evaluated both on its own in an indoor range and on a typical vehicle roof at an outdoor range. By using this evaluation file to estimate the receiver position could achieve phase motion error-free result.

2020 ◽  
Vol 2 (1) ◽  
pp. 41
Author(s):  
Ashutosh Bhardwaj

Satellite-based navigation techniques have revolutionized modern-day surveying with unprecedented accuracies along with the traditional and terrestrial-based navigation techniques. However, the satellite-based techniques gain popularity due to their ease and availability. The position and attitude sensors mounted on satellites, aerial, and ground-based platforms as well as different types of equipment play a vital role in remote sensing providing navigation and data. The presented review in this paper describes the terrestrial (LORAN-C, Omega, Alpha, Chayka) and satellite-based systems with their major features and peculiar applications. The regional and global navigation satellite systems (GNSS) can provide the position of a static object or a moving object i.e., in Kinematic mode. The GNSS systems include the NAVigation Satellite Timing And Ranging Global Positioning System (NAVSTAR GPS), of the United States of America (USA); the Globalnaya navigatsionnaya sputnikovaya sistema (GLObal NAvigation Satellite System, GLONASS), of Russia; BEIDOU, of China; and GALILEO, of the European Union (EU). Among the initial satellite-based regional navigation systems included are the TRANSIT of the US and TSYKLON of what was then the USSR which became operational in the 1960s. Regional systems developed in the last decade include the Quasi-Zenith Satellite System (QZSS) and the Indian Regional Navigation Satellite System (IRNSS). Currently, these global and regional satellite-based systems provide their services with accuracies of the order of 10–20 m using the trilateration method of surveying for civil use. The terrestrial and satellite-based augmented systems (SBAS) were further developed along with different surveying techniques to improve the accuracies up to centimeters or millimeter levels for precise applications.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Xin Chen ◽  
Di He ◽  
Ling Pei

Abstract Global Navigation Satellite System (GNSS) multipath channel models are fundamental and critical for signal simulation and receiver performance evaluation. They also aid the designing of suitable multipath error mitigation algorithms when the properties of multipath channel are available. However, there is insufficient existing research on BeiDou Navigation Satellite System (BDS) signal multipath channel models. In this study, multipath channel statistical models are established on the basis of extensive datasets of the BDS B1I signal. A multipath parameter estimation algorithm is designed to extract information of multipath rays from the intermediate frequency data. The delay, power loss, Doppler fading frequency, and lifetime distribution models for static and dynamic vehicle platforms are established and compared, and the effects of the satellite orbit type and platform speed on the models are analyzed. The results reveal the detailed distribution and variation characteristics of the multipath parameters and are valuable for the development of accurate urban navigation systems.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2594
Author(s):  
Aiden Morrison ◽  
Nadezda Sokolova ◽  
James Curran

This paper investigates the challenges of developing a multi-frequency radio frequency interference (RFI) monitoring and characterization system that is optimized for ease of deployment and operation as well as low per unit cost. To achieve this, we explore the design and development of a multiband global navigation satellite system (GNSS) front-end which is intrinsically capable of synchronizing side channel information from non-RF sensors, such as inertial measurement units and integrated power meters, to allow the simultaneous production of substantial amounts of sampled spectrum while also allowing low-cost, real-time monitoring and logging of detected RFI events. While the inertial measurement unit and barometer are not used in the RFI investigation discussed, the design features that provide for their precise synchronization with the RF sample stream are presented as design elements worth consideration. The designed system, referred to as Four Independent Tuners with Data-packing (FITWD), was utilized in a data collection campaign over multiple European and Scandinavian countries in support of the determination of the relative occurrence rates of L1/E1 and L5/E5a interference events and intensities where it proved itself a successful alternative to larger and more expensive commercial solutions. The dual conclusions reached were that it was possible to develop a compact low-cost, multi-channel radio frequency (RF) front-end that implicitly supported external data source synchronization, and that such monitoring systems or similar capabilities integrated within receivers are likely to be needed in the future due to the increasing occurrence rates of GNSS RFI events.


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 188 ◽  
Author(s):  
Heyone Kim ◽  
Junhak Lee ◽  
Sang Heon Oh ◽  
Hyoungmin So ◽  
Dong-Hwan Hwang

To avoid degradation of navigation performance in the navigation warfare environment, the multi-radio integrated navigation system can be used, in which all available radio navigation systems are integrated to back up Global Navigation Satellite System (GNSS) when the GNSS is not available. Before real-time multi-radio integrated navigation systems are deployed, time and cost can be saved when the modeling and simulation (M&S) software is used in the performance evaluation. When the multi-radio integrated navigation system M&S is comprised of independent function modules, it is easy to modify and/or to replace the function modules. In this paper, the M&S software design method was proposed for multi-radio integrated navigation systems as a GNSS backup under the navigation warfare. The M&S software in the proposed design method consists of a message broker and function modules. All the messages were transferred through the message broker in order to be exchanged between the function modules. The function modules in the M&S software were independently operated due to the message broker. A message broker-based M&S software was designed for a multi-radio integrated navigation system. In order to show the feasibility of the proposed design method, the M&S software was implemented for Global Positioning System (GPS), Korean Navigation Satellite System (KNSS), enhanced Long range navigation (eLoran), Loran-C, and Distance Measuring Equipment/Very high-frequency Omnidirectional Radio range (DME/VOR). The usefulness of the proposed design method was shown by checking the accuracy and availability of the GPS only navigation and the multi-radio integrated navigation system under the attack of jamming to GPS.


Sign in / Sign up

Export Citation Format

Share Document