scholarly journals A comparative study of floor construction on sloping sites: an analysis of cumulative energy demand and greenhouse gas emissions

2016 ◽  
Vol 16 (1) ◽  
pp. 33-49 ◽  
Author(s):  
Grace Ding ◽  
Perry Forsythe

In order to make environmentally aware decisions, there is growing interest in the comparative energy and greenhouse gas (GHG) performance of competing construction methods. Little research has been done concerning competing ground floor construction methods, especially given different site variables, such as slope and soil type. A life cycle assessment approach was adopted to analyse environmental impacts, including cumulative energy demand and GHG emissions for detached housing construction in Australia. Data was drawn from 24 case study housing projects, including 12 reinforced concrete and 12 suspended timber floor projects. The data presented in the paper compares cumulative energy demand, GHG and the constituent parts of competing construction methods. The findings indicate that the timber floors use/create significantly less cumulative energy demand and GHG emissions than concrete floors—approximately 2.1 to 2.7 times less energy and 2.3 to 2.9 times less GHG. These findings are limited to the site slope and foundation soil types identified in the paper. The main application of the work is in guidance concerning the lowest environmental impact options for detached housing construction.

2017 ◽  
Vol 152 ◽  
pp. 67-79 ◽  
Author(s):  
Christiane Peter ◽  
Xenia Specka ◽  
Joachim Aurbacher ◽  
Peter Kornatz ◽  
Christiane Herrmann ◽  
...  

2019 ◽  
Vol 109 (4) ◽  
pp. 1173-1188 ◽  
Author(s):  
Julia Baudry ◽  
Philippe Pointereau ◽  
Louise Seconda ◽  
Rodolphe Vidal ◽  
Bruno Taupier-Letage ◽  
...  

ABSTRACT Background Organic food consumption has steadily increased over the past decade in westernized countries. Objective The aim of this study, based on observational data, was to compare some sustainability features of diets from consumers with varying levels of organic food. Methods The diet sustainability among 29,210 participants of the NutriNet-Santé study was estimated using databases developed within the BioNutriNet project. Four dimensions (nutrition, environment, economy, and toxicology) of diet sustainability were assessed using: 1) nutritional indicators through dietary intakes and dietary scores, and BMI; 2) environmental indicators (greenhouse gas emissions, cumulative energy demand, and land occupation); 3) economic indicators via diet monetary costs; and 4) estimated daily food exposures to 15 pesticides. Adjusted means (95% CI) across weighted quintiles of organic food consumption in the diet were estimated via ANCOVA. Breakdown methods were used to disentangle the contribution of the production system (organic compared with conventional) from the dietary pattern in the variation of diet-related environmental impacts, monetary costs, and pesticide exposure, between the 2 extreme quintiles. Results Higher organic food consumption was associated with higher plant-food and lower animal-food consumption, overall nutritional quality (higher dietary scores), and lower BMI. Diet-related greenhouse-gas emissions, cumulative energy demand, and land occupation gradually decreased with increasing organic food consumption, whereas total diet monetary cost increased. Diet exposure to most pesticides decreased across quintiles. Conclusions Diets of high organic food consumers were generally characterized by strong nutritional and environmental benefits. The latter were mostly driven by the low consumption of animal-based foods, whereas the production system was responsible for the higher diet monetary costs, and the overall reduced dietary pesticide exposure.


Author(s):  
Luis Carral ◽  
Juan José Cartelle Barros ◽  
Humberto Carro Fidalgo ◽  
Carolina Camba Fabal ◽  
Alicia Munín Doce

The principle of sustainability should condition a project in which artificial reefs are being installed to protect biodiversity as well as enhance costal ecosystems. In particular, this principle should be taken into account in the logistical processes related to manufacture and transport. This study assesses the global warming potential (GWP) and cumulative energy demand (CED) of developing a coastal ecosystem enhancement programme in the estuary region of Galicia, north-western Spain. The focus is on the processes involved in creating green artificial reefs (GARs): manufacture, transport and installation. The starting point is the supply chain for the green artificial reef (GAR) units; greenhouse gas emissions (GHG) and energy needs for each phase are analysed. Various scenarios are considered to determine which options are indeed available when it comes to establishing the supply chain. Different types of energy supplies, different options for the location of production centres, as well as different means of transport were studied. Results reveal the critical phases for selecting how the GAR units must be produced, transported by road and sea and then installed in their permanent location.


2021 ◽  
Vol 13 (12) ◽  
pp. 6894
Author(s):  
Shakira R. Hobbs ◽  
Tyler M. Harris ◽  
William J. Barr ◽  
Amy E. Landis

The environmental impacts of five waste management scenarios for polylactic acid (PLA)-based bioplastics and food waste were quantified using life cycle assessment. Laboratory experiments have demonstrated the potential for a pretreatment process to accelerate the degradation of bioplastics and were modeled in two of the five scenarios assessed. The five scenarios analyzed in this study were: (1a) Anaerobic digestion (1b) Anaerobic digestion with pretreatment; (2a) Compost; (2a) Compost with pretreatment; (3) Landfill. Results suggested that food waste and pretreated bioplastics disposed of with an anaerobic digester offers life cycle and environmental net total benefits (environmental advantages/offsets) in several areas: ecotoxicity (−81.38 CTUe), eutrophication (0 kg N eq), cumulative energy demand (−1.79 MJ), global warming potential (0.19 kg CO2), and human health non-carcinogenic (−2.52 CTuh). Normalized results across all impact categories show that anaerobically digesting food waste and bioplastics offer the most offsets for ecotoxicity, eutrophication, cumulative energy demand and non-carcinogenic. Implications from this study can lead to nutrient and energy recovery from an anaerobic digester that can diversify the types of fertilizers and decrease landfill waste while decreasing dependency on non-renewable technologies. Thus, using anaerobic digestion to manage bioplastics and food waste should be further explored as a viable and sustainable solution for waste management.


Author(s):  
Alberto Tama Franco

Wind technology is considered to be among the most promising types of renewable energy sources, and due to high oil prices and growing concerns about climate change and energy security, it has been the subject of extensive considerations in recent years, including questions related to the relative sustainability of electricity production when the manufacturing, assembly, transportation and dismantling processes of these facilities are taken into account. The present article evaluates the environmental impacts, carbon emissions and water consumption, derived from the production of electric energy of the Villonaco wind farm, located in Loja-Ecuador, during its entire life cycle, using the Life Cycle Analysis method. Finally, it is concluded that wind energy has greater environmental advantages, since it has lower values of carbon and water footprints than other energy sources. Additionally, with the techniques Cumulative Energy Demand and Energy Return on Investment, sustainability in the production of electricity from wind power in Ecuador is demonstrated; and, that due to issues of vulnerability to climate change, the diversification of its energy mix is essential considering the inclusion of non-conventional renewable sources such as solar or wind, this being the only way to reduce both the carbon footprint and the water supply power.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 252 ◽  
Author(s):  
Vincenzo Muteri ◽  
Maurizio Cellura ◽  
Domenico Curto ◽  
Vincenzo Franzitta ◽  
Sonia Longo ◽  
...  

The photovoltaic (PV) sector has undergone both major expansion and evolution over the last decades, and currently, the technologies already marketed or still in the laboratory/research phase are numerous and very different. Likewise, in order to assess the energy and environmental impacts of these devices, life cycle assessment (LCA) studies related to these systems are always increasing. The objective of this paper is to summarize and update the current literature of LCA applied to different types of grid-connected PV, as well as to critically analyze the results related to energy and environmental impacts generated during the life cycle of PV technologies, from 1st generation (traditional silicon based) up to the third generation (innovative non-silicon based). Most of the results regarded energy indices like energy payback time, cumulative energy demand, and primary energy demand, while environmental indices were variable based on different scopes and impact assessment methods. Moreover, the review work allowed to highlight and compare key parameters (PV type and system, geographical location, efficiency), methodological insights (functional unit, system boundaries, etc.), and energy/environmental hotspots of 39 LCA studies relating to different PV systems, in order to underline the importance of these aspects, and to provide information and a basis of comparison for future analyses.


Sign in / Sign up

Export Citation Format

Share Document