scholarly journals An Analysis of the Effect of Molten Salt Thermal Storage on Parabolic Trough Concentrated Solar Power Plant Efficiency

2015 ◽  
Vol 2 ◽  
pp. 3-13
Author(s):  
Christopher Hickin ◽  
Henry Li ◽  
Sharnan Kemp

In the development of renewable energy sources, there has been a trend toward increasing and stabilising the power output of Concentrated Solar Power Plants (CSPPs) during times of reduced solar resource through the use of Thermal Energy Storage Devices (TESDs). This study investigates whether the use of a molten salt TESD decreases the efficiency of a parabolic trough CSPP due to additional system energy losses despite prolonging the operational time of the CSPP. A theoretical analysis of a simplified CSPP was made to determine if a TESD would impact the efficiency of the CSPP. This was followed up by a survey of currently active parabolic trough CSPPs both with and without molten salt TESDs. The theoretical analysis illustrated that a TESD would have no effect on the efficiency of a CSPP. However, the survey revealed that the use of a TESD improved the efficiency of a CSPP. The results of the study don't support the theoretical analysis or the hypothesis suggesting that a property has been overlooked. This property is most likely to be that generators tend to operate best within a certain temperature range, and in a CSPP the optimum temperature range cannot be maintained. This results in a generator being selected capable of operating for the longest period with the lowest amount of excess solar energy. When a TESD is implemented, the excess solar energy is stored for later use, prolonging the generator's running time and increasing the useable energy. The realisation of the ability of a TESD to increase the efficiency of a CSPP as well as extending its operating time shows a promising area of development in CSPP technology and increasing its application in electricity generation.

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Andrzej Bielecki ◽  
Sebastian Ernst ◽  
Wioletta Skrodzka ◽  
Igor Wojnicki

Concentrated solar power plants belong to the category of clean sources of renewable energy. The paper discusses the possibilities for the use of molten salts as storage in modern CSP plants. Besides increasing efficiency, it may also shift their area of application: thanks to increased controllability, they may now be used not only to cover baseload but also as more agile, dispatchable generators. Both technological and economic aspects are presented, with focus on the European energy sector and EU legislation. General characteristics for CSP plants, especially with molten salt storage, are discussed. Perspectives for their development, first of all in economic aspects, are considered.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8142
Author(s):  
Sanzana Tabassum ◽  
Tanvin Rahman ◽  
Ashraf Ul Islam ◽  
Sumayya Rahman ◽  
Debopriya Roy Dipta ◽  
...  

The ambitious target of net-zero emission by 2050 has been aggressively driving the renewable energy sector in many countries. Leading the race of renewable energy sources is solar energy, the fastest growing energy source at present. The solar industry has witnessed more growth in the last decade than it has in the past 40 years, owing to its technological advancements, plummeting costs, and lucrative incentives. The United States is one of the largest producers of solar power in the world and has been a pioneer in solar adoption, with major projects across different technologies, mainly photovoltaic, concentrated solar power, and solar heating and cooling, but is expanding towards floating PV, solar combined with storage, and hybrid power plants. Although the United States has tremendous potential for exploiting solar resources, there is a scarcity of research that details the U.S. solar energy scenario. This paper provides a comprehensive review of solar energy in the U.S., highlighting the drivers of the solar industry in terms of technology, financial incentives, and strategies to overcome challenges. It also discusses the prospects of the future solar market based on extensive background research and the latest statistics. In addition, the paper categorizes the U.S. states into five tiers based on their solar prospects calculated using analytical hierarchy process and regression analysis. The price of solar technologies in the U.S. is also predicted up to 2031 using Wright’s law, which projected a 77% reduction in the next decade.


Author(s):  
David Kearney ◽  
Henry Price

Parabolic trough power plant technology is one of the most demonstrated solar power options commercially available. While trough power plants are the least expensive solar option, cost of electricity still exceeds that needed to directly compete with conventional fossil-fired large-scale central power technologies. Several evaluations have been done that identify a series of mechanisms for significant cost reduction over the next decade. One of the opportunities for improving the economics of parabolic trough plants is the development of lower cost and more efficient thermal energy storage (TES) technologies. This paper focuses on several of the TES technologies currently under development, namely: the use of an indirect molten-salt storage system, the use of molten-salt as a heat transfer fluid in the solar field and thermal energy storage system, and the development of new types of storage fluids. The assessment compares the cost and performance of these candidate thermal energy storage technologies by evaluating their impact on the levelized cost of electricity from the plant. This analysis is updated based on work conducted on these technologies during the last year.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3131 ◽  
Author(s):  
Adarsh Vaderobli ◽  
Dev Parikh ◽  
Urmila Diwekar

Renewable energy use can mitigate the effects of climate change. Solar energy is amongst the cleanest and most readily available renewable energy sources. However, issues of cost and uncertainty associated with solar energy need to be addressed to make it a major source of energy. These uncertainties are different for different locations. In this work, we considered four different locations in the United States of America (Northeast, Northwest, Southeast, Southwest). The weather and cost uncertainties of these locations are included in the formulation, making the problem an optimization-under-uncertainty problem. We used the novel Better Optimization of Nonlinear Uncertain Systems (BONUS) algorithm to solve these problems. The performance and economic models provided by the System Advisory Model (SAM) system from NREL were used for this optimization. Since this is a black-box model, this adds difficulty for optimization and optimization under uncertainty. The objective function and constraints in stochastic optimization (stochastic programming) problems are probabilistic functionals. The generalized treatment of such problems is to use a two-loop computationally intensive procedure, with an inner loop representing probabilistic or stochastic models or scenarios instead of the deterministic model, inside the optimization loop. BONUS circumvents the inner sampling loop, thereby reducing the computational intensity significantly. BONUS can be used for black-box models. The results show that, using the BONUS algorithm, we get 41%–47% of savings on the expected value of the Levelized Cost of Electricity (LCOE) for Parabolic Trough Solar Power Plants. The expected LCOE in New York is 57.42%, in Jacksonville is 38.52%, and in San Diego is 17.57% more than in Las Vegas. This difference is due to the differences in weather and weather uncertainties at these locations.


Sign in / Sign up

Export Citation Format

Share Document