Assessment of Thermal Energy Storage for Parabolic Trough Solar Power Plants

Author(s):  
David Kearney ◽  
Henry Price

Parabolic trough power plant technology is one of the most demonstrated solar power options commercially available. While trough power plants are the least expensive solar option, cost of electricity still exceeds that needed to directly compete with conventional fossil-fired large-scale central power technologies. Several evaluations have been done that identify a series of mechanisms for significant cost reduction over the next decade. One of the opportunities for improving the economics of parabolic trough plants is the development of lower cost and more efficient thermal energy storage (TES) technologies. This paper focuses on several of the TES technologies currently under development, namely: the use of an indirect molten-salt storage system, the use of molten-salt as a heat transfer fluid in the solar field and thermal energy storage system, and the development of new types of storage fluids. The assessment compares the cost and performance of these candidate thermal energy storage technologies by evaluating their impact on the levelized cost of electricity from the plant. This analysis is updated based on work conducted on these technologies during the last year.

2002 ◽  
Vol 124 (2) ◽  
pp. 145-152 ◽  
Author(s):  
Ulf Herrmann ◽  
David W. Kearney

A literature review was carried out to critically evaluate the state of the art of thermal energy storage applied to parabolic trough power plants. This survey briefly describes the work done before 1990 followed by a more detailed discussion of later efforts. The most advanced system is a 2-tank-storage system where the heat transfer fluid (HTF) also serves as storage medium. This concept was successfully demonstrated in a commercial trough plant (13.8MWe SEGS I plant; 120MWht storage capacity) and a demonstration tower plant (10MWe Solar Two; 105MWht storage capacity). However, the HTF used in state-of-the-art parabolic trough power plants 30-80MWe is expensive, dramatically increasing the cost of larger HTF storage systems. Other promising storage concepts are under development, such as concrete storage, phase change material storage, and chemical storage. These concepts promise a considerable cost reduction compared to the direct 2-tank system, but some additional R&D is required before those systems can be used in commercial solar power plants. An interesting and likely cost-effective near-term option for thermal energy storage for parabolic trough power plants is the use of an indirect 2-tank-storage, where another (less expensive) liquid medium such as molten salt is utilized rather than the HTF itself.


Author(s):  
K. Nithyanandam ◽  
R. Pitchumani

Integrating a thermal energy storage (TES) in a concentrating solar power (CSP) plant allows for continuous operation even during times when solar radiation is not available, thus providing a reliable output to the grid. In the present study, the cost and performance models of an encapsulated phase change material thermocline storage system are integrated with a CSP power tower system model to investigate its dynamic performance. The influence of design parameters of the storage system is studied for different solar multiples of the plant to establish design envelopes that satisfy the U.S. Department of Energy SunShot Initiative requirements, which include a round-trip exergetic efficiency greater than 95% and storage cost less than $15/kWht for a minimum discharge period of 6 hours. From the design windows, optimum designs of the storage system based on minimum LCOE, maximum exergetic efficiency, and maximum capacity factor are reported and compared with the results of two-tank molten salt storage system. Overall, this study presents the first effort to construct a latent thermal energy storage (LTES)-integrated CSP plant model, that can help decision makers in assessing the impact, cost and performance of a latent thermocline energy storage system on power generation from molten salt power tower CSP plant.


2021 ◽  
Vol 65 (2-4) ◽  
pp. 271-278
Author(s):  
Abdullah Bamoshmoosh ◽  
Gianluca Valenti

The development of thermal energy storage systems is key to increasing the deployability and reliability of concentrated solar power plants. Previous work from the authors studies the possibility of exploiting vapor-liquid phase change in closed and constant volumes as a thermal energy storage mechanism because of the higher heat transfer coefficients of the phenomenon with respect to solid-liquid phase change energy storage systems. The objective of this paper is to propose a new thermal energy storage condition based on vapor-liquid systems for concentrated solar power plants. The reference case of the Khi Solar One power plant in Upington, South Africa is taken. Results show that increasing the critical temperature of the storage fluid allows for increased temperature differences and higher volume-based energy storage, while the decrease of critical pressure allows lower mechanical stresses on the energy storage system. The use of high critical temperature fluids such as ethylene glycol allows for an increase of the volume-based energy storage of around 95% at same pressure conditions with respect to the base case. The use of low critical pressure siloxanes such as D6 results in a decrease of around 26% in the volume-based energy storage. The use of D6 on the other hand leads to a substantial decrease in the maximum pressure of the storage system, which drops from 8.2 MPa to 1 MPa, allowing the use of cheaper and less complex equipment. Both cases lead to a relevant increase in the maximum storage temperature, increased of 130 K and 55 K respectively.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1949 ◽  
Author(s):  
Alberto Boretti ◽  
Jamal Nayfeh ◽  
Wael Al-Kouz

The paper proposes the validation of the latest System Advisor Model (SAM) vs. the experimental data for concentrated solar power energy facilities. Both parabolic trough, and solar tower, are considered, with and without thermal energy storage. The 250 MW parabolic trough facilities of Genesis, Mojave, and Solana, and the 110 MW solar tower facility of Crescent Dunes, all in the United States South-West, are modeled. The computed monthly average capacity factors for the average weather year are compared with the experimental data measured since the start of the operation of the facilities. While much higher sampling frequencies are needed for proper validation, as monthly averaging dramatically filters out differences between experiments and simulations, computational results are relatively close to measured values for the parabolic trough, and very far from for solar tower systems. The thermal energy storage is also introducing additional inaccuracies. It is concluded that the code needs further development, especially for the solar field and receiver of the solar tower modules, and the thermal energy storage. Validation of models and sub-models vs. high-frequency data collected on existing facilities, for both energy production, power plant parameters, and weather conditions, is a necessary step before using the code for designing novel facilities.


Author(s):  
Robert W. Bradshaw ◽  
Nathan P. Siegel

Thermal energy storage can enhance the utility of parabolic trough solar power plants by providing the ability to match electrical output to peak demand periods. An important component of thermal energy storage system optimization is selecting the working fluid used as the storage media and/or heat transfer fluid. Large quantities of the working fluid are required for power plants at the scale of 100-MW, so maximizing heat transfer fluid performance while minimizing material cost is important. This paper reports recent developments of multi-component molten salt formulations consisting of common alkali nitrate and alkaline earth nitrate salts that have advantageous properties for applications as heat transfer fluids in parabolic trough systems. A primary disadvantage of molten salt heat transfer fluids is relatively high freeze-onset temperature compared to organic heat transfer oil. Experimental results are reported for formulations of inorganic molten salt mixtures that display freeze-onset temperatures below 100°C. In addition to phase-change behavior, several properties of these molten salts that significantly affect their suitability as thermal energy storage fluids were evaluated, including chemical stability and viscosity. These alternative molten salts have demonstrated chemical stability in the presence of air up to approximately 500°C in laboratory testing and display chemical equilibrium behavior similar to Solar Salt. The capability to operate at temperatures up to 500°C may allow an increase in maximum temperature operating capability vs. organic fluids in existing trough systems and will enable increased power cycle efficiency. Experimental measurements of viscosity were performed from near the freeze-onset temperature to about 200°C. Viscosities can exceed 100 cP at the lowest temperature but are less than 10 cP in the primary temperature range at which the mixtures would be used in a thermal energy storage system. Quantitative cost figures of constituent salts and blends are not currently available, although, these molten salt mixtures are expected to be inexpensive compared to synthetic organic heat transfer fluids. Experiments are in progress to confirm that the corrosion behavior of readily available alloys is satisfactory for long-term use.


Author(s):  
Karthik Nithyanandam ◽  
Ranga Pitchumani

Latent thermal energy storage (LTES) system offers high energy storage density and nearly isothermal operation for concentrating solar power generation. However, the low thermal conductivity possessed by the phase change material (PCM) used in LTES system limits the heat transfer rates. Utilizing thermosyphons to charge or discharge a LTES system offers a promising engineering solution to compensate for the low thermal conductivity of the PCM. The present work numerically investigates the enhancement in the thermal performance of charging and discharging process of LTES system by embedding thermosyphons. A transient, computational analysis of the LTES system with embedded thermosyphons is performed for both charging and discharging cycles. The influence of the design configuration of the system and the arrangement of the thermosyphons on the charge and discharge performance of the LTES installed in a concentrating solar power plant (CSP) is analyzed to identify configurations that lead to improved effectiveness.


Sign in / Sign up

Export Citation Format

Share Document