Powerful switching DC/DC converter on silicon carbide transistors

2021 ◽  
pp. 83-89

The paper deals with the description of operational principles of powerful 16 kW step-down voltage converter for use in the power plant of hybrid aircraft. The BUCK-converter works in a range of input voltages from 1300 to 1000 V and output voltages from 800 to 1000 V with current limitation of 20 A. The efficiency of the converter is about 99 %.

2016 ◽  
Vol 76 ◽  
pp. 01010 ◽  
Author(s):  
Peter Janku ◽  
Martin Pospisilik ◽  
Tomas Dulik
Keyword(s):  

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1131 ◽  
Author(s):  
Mauricio Dalla Vecchia ◽  
Giel Van den Broeck ◽  
Simon Ravyts ◽  
Johan Driesen

This paper explores and presents the application of the Inductor–Diode and Inductor-Capacitor-Diode structures in a DC–DC step-down configuration for systems that require voltage adjustments. DC micro/picogrids are becoming more popular nowadays and the study of power electronics converters to supply the load demand in different voltage levels is required. Multiple strategies to step-down voltages are proposed based on different approaches, e.g., high-frequency transformer and voltage multiplier/divider cells. The key question that motivates the research is the investigation of the aforementioned Inductor–Diode and Inductor–Capacitor–Diode, current multiplier/divider cells, in a step-down application. The two-stage buck converter is used as a study case to achieve the output voltage required. To extend the intermediate voltage level flexibility in the two-stage buck converter, a second switch was implemented replacing a diode, which gives an extra degree-of-freedom for the topology. Based on this modification, three regions of operation are theoretically defined, depending on the operational duty cycles δ2 and δ1 of switches S2 and S1. The intermediate and output voltage levels are defined based on the choice of the region of operation and are mapped herein, summarizing the possible voltage levels achieved by each configuration. The paper presents the theoretical analysis, simulation, implementation and experimental validation of a converter with the following specifications; 48 V/12 V input-to-output voltage, different intermediate voltage levels, 100 W power rating, and switching frequency of 300 kHz. Comparisons between mathematical, simulation, and experimental results are made with the objective of validating the statements herein introduced.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 412 ◽  
Author(s):  
Ghulam Abbas ◽  
Jason Gu ◽  
Umar Farooq ◽  
Muhammad Abid ◽  
Ali Raza ◽  
...  

In this paper, a nonlinear least squares optimization method is employed to optimize the performance of pole-zero-cancellation (PZC)-based digital controllers applied to a switching converter. An extensively used step-down converter operating at 1000 kHz is considered as a plant. In the PZC technique, the adverse effect of the (unwanted) poles of the buck converter power stage is diminished by the complex or real zeros of the compensator. Various combinations of the placement of the compensator zeros and poles can be considered. The compensator zeros and poles are nominally/roughly placed while attempting to cancel the converter poles. Although PZC techniques exhibit satisfactory performance to some extent, there is still room for improvement of the controller performance by readjusting its poles and zeros. The (nominal) digital controller coefficients thus obtained through PZC techniques are retuned intelligently through a nonlinear least squares (NLS) method using the Levenberg-Marquardt (LM) algorithm to ameliorate the static and dynamic performance while minimizing the sum of squares of the error in a quicker way. Effects of nonlinear components such as delay, ADC/DAC quantization error, and so forth contained in the digital control loop on performance and loop stability are also investigated. In order to validate the effectiveness of the optimized PZC techniques and show their supremacy over the traditional PZC techniques and the ones optimized by genetic algorithms (GAs), simulation results based on a MATLAB/Simulink environment are provided. For experimental validation, rapid hardware-in-the-loop (HiL) implementation of the compensated buck converter system is also performed.


2019 ◽  
Vol 12 (12) ◽  
pp. 3306-3314 ◽  
Author(s):  
Mauricio Dalla Vecchia ◽  
Giel Van den Broeck ◽  
Simon Ravyts ◽  
Jeroen Tant ◽  
Johan Driesen

Sign in / Sign up

Export Citation Format

Share Document