scholarly journals APPLICATION OF ULTRASOUND ASSISTED EXTRACTION IN THE MANGIFERIN OBTAINING FROM Mangifera indica L LEAVES

Author(s):  
I. SEVILLA ◽  
S. SALOMON ◽  
I. AYALA ◽  
L. NUEVAS-PAZ ◽  
J. ACOSTA-ESQUIJAROSA ◽  
...  
Separations ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 94
Author(s):  
Anahí J. Borrás-Enríquez ◽  
Elizabeth Reyes-Ventura ◽  
Socorro J. Villanueva-Rodríguez ◽  
Lorena Moreno-Vilet

Manililla is a mango variety whose residues contain bioactive compounds such as polyphenols and flavonoids, with high added value. The use of environmentally friendly extraction technology would be of great relevance; hence, this study aimed to evaluate the effect of solvent relation, sonication time and amplitude on the ultrasound-assisted extraction of total polyphenols in Manililla mango residues (peel, endocarp and kernel) and antioxidant activity. An experimental design 23 with a central point was used to evaluate the curvature behavior of the process variables. Conventional maceration was used as a control. The better conditions were obtained at the central point using 50% ethanol in water, 60% amplitude and 20 min of sonication time. We obtained values of up to 1814 mg GAE/100 g, 469 mg GAE/100 g and 672 mg GAE/100 g of total polyphenols and 1228 mg QE/100 g, 653 mg QE/100 g and 880 mg QE/100 g of total flavonoids for peel, endocarp and kernel, respectively. Mangiferin was quantified in ultrasound-assisted extraction at 150 mg/g in peel and 0.025 mg/g in the kernel, but it was not detectable in maceration. An antioxidant capacity of 87%, 14% and 83% inhibition for peel, endocarp and kernel, respectively, were obtained. Peel and kernel were the residues with higher potential as extraction material, while endocarp was not.


2018 ◽  
Vol 21 ◽  
pp. 125-131 ◽  
Author(s):  
Gilberto Mercado-Mercado ◽  
Efigenia Montalvo-González ◽  
Gustavo A. González-Aguilar ◽  
Emilio Alvarez-Parrilla ◽  
Sonia G. Sáyago-Ayerdi

Molecules ◽  
2014 ◽  
Vol 19 (2) ◽  
pp. 1411-1421 ◽  
Author(s):  
Tang-Bin Zou ◽  
En-Qin Xia ◽  
Tai-Ping He ◽  
Ming-Yuan Huang ◽  
Qing Jia ◽  
...  

Author(s):  
G. Mercado-Mercado ◽  
◽  
E. Montalvo-González ◽  
J.A. Sánchez-Burgos ◽  
R.M. Velázquez-Estrada ◽  
...  

2019 ◽  
Vol 4 (2) ◽  

There is a worldwide demand for phenolic compounds (PC) because they exhibit several biological activities. This work aimed at extracting phenolic compounds from peanut meal. The methods of extraction were mainly: conventional solvent extraction (traditional methods) and ultrasound assisted extraction (recent methods) and comparing their results. Peanut meal (PM) was prepared by defatting with n-hexane, and then extracted by the two previous methods. First, the conventional solvents used were 80% methanol, ethanol, acetone, isopropanol, and distilled water. Then studied Different parameters such as meal: water ratio, also the effect of temperature and the pH on the extraction process. Second, ultrasonic assisted extractions (USAE), the parameters investigated were temperature, time and speed of sonication. Finally, all the extracts were analyzed by HPLC for their phenolic contents. Results indicated that the highest extracted PC achieved by solvents was in distilled water where 1:100, Meal: Water ratio which extracted 40 mg PC / g PM at 30& 35°C. Highest extracted PC was achieved by alkaline medium at pH 12 more than acidic and neutral medium. While (USAE) at speed 8 ultrasonication and temperature 30ᵒC, extracted 49.2mg PC /g PM. Sothe ultrasound assisted extraction exhibited great influence on the extraction of phenolic compounds from peanut meal. The ultrasonic peanut extract was examined for its antioxidant, antimicrobial and anticarcinogenic activities. The antioxidant activity of PM phenolic extract prepared by ultrasonic technique, was measured by, β-carotene, and DPPH methods, and reducing antioxidant power. Results revealed values: 84.57, 57.72 and 5960 respectively. The PM extract showed different levels of antimicrobial activity against the pathogenic bacteria used. As for the anticarcinogenic effect PM phenolic extract most effective on inhibiting colon carcinoma and lung carcinoma cell lines with IC50 = 20.7 and 20.8 µ/ml., respectively. This was followed by intestinal carcinoma and liver carcinoma cell lines with IC50= 39.6 and 40.2µ/ml.


Sign in / Sign up

Export Citation Format

Share Document