scholarly journals Data is the New Plastics: Developing Machine Learning UX Design Methods for Artificial Intelligence

2021 ◽  
Author(s):  
Frédérique Krupa
Author(s):  
Jan Bosch ◽  
Helena Holmström Olsson ◽  
Ivica Crnkovic

Artificial intelligence (AI) and machine learning (ML) are increasingly broadly adopted in industry. However, based on well over a dozen case studies, we have learned that deploying industry-strength, production quality ML models in systems proves to be challenging. Companies experience challenges related to data quality, design methods and processes, performance of models as well as deployment and compliance. We learned that a new, structured engineering approach is required to construct and evolve systems that contain ML/DL components. In this chapter, the authors provide a conceptualization of the typical evolution patterns that companies experience when employing ML as well as an overview of the key problems experienced by the companies that they have studied. The main contribution of the chapter is a research agenda for AI engineering that provides an overview of the key engineering challenges surrounding ML solutions and an overview of open items that need to be addressed by the research community at large.


Author(s):  
Jean-Luc Segapeli ◽  
Annie Cavarero

Abstract It is possible to classify the Object-Oriented design methods in two sets. The first set, which is the most numerous, uses an entity relationship approach to build a static class schema. Then this schema is completed by the use of different models (dynamic, functional). The second set tries to obtain a class schema but they don’t provide a guide to build it. So if different designers work on the same application, it is impossible to obtain the same schema. So, in this paper we want to prove that we have defined a new design process (generalization process) which is based upon a set of rules to guide the users and the designers to build a representation of their application. The originality of our process lays upon works developped in machine learning and artificial intelligence. We try to translate the expertize of users or designers given through examples into a class schema. Therefore we have defined a new algorithm of clustering to organize examples into a hierarchy of classes. This process is included in a project called C.O.D. (Class and Object Definition). The project is composed of different processes which take into account the expertize level of the designers and their knowledge about the application domain: specialization process, which is based upon generic application and fuzzy object classes; composition process, which uses a functional application definition with an algorithm to build classes and links between classes; generalization process, which is developed in this paper.


Author(s):  
Matthew N. O. Sadiku ◽  
Chandra M. M Kotteti ◽  
Sarhan M. Musa

Machine learning is an emerging field of artificial intelligence which can be applied to the agriculture sector. It refers to the automated detection of meaningful patterns in a given data.  Modern agriculture seeks ways to conserve water, use nutrients and energy more efficiently, and adapt to climate change.  Machine learning in agriculture allows for more accurate disease diagnosis and crop disease prediction. This paper briefly introduces what machine learning can do in the agriculture sector.


Author(s):  
M. A. Fesenko ◽  
G. V. Golovaneva ◽  
A. V. Miskevich

The new model «Prognosis of men’ reproductive function disorders» was developed. The machine learning algorithms (artificial intelligence) was used for this purpose, the model has high prognosis accuracy. The aim of the model applying is prioritize diagnostic and preventive measures to minimize reproductive system diseases complications and preserve workers’ health and efficiency.


2018 ◽  
Vol 15 (1) ◽  
pp. 6-28 ◽  
Author(s):  
Javier Pérez-Sianes ◽  
Horacio Pérez-Sánchez ◽  
Fernando Díaz

Background: Automated compound testing is currently the de facto standard method for drug screening, but it has not brought the great increase in the number of new drugs that was expected. Computer- aided compounds search, known as Virtual Screening, has shown the benefits to this field as a complement or even alternative to the robotic drug discovery. There are different methods and approaches to address this problem and most of them are often included in one of the main screening strategies. Machine learning, however, has established itself as a virtual screening methodology in its own right and it may grow in popularity with the new trends on artificial intelligence. Objective: This paper will attempt to provide a comprehensive and structured review that collects the most important proposals made so far in this area of research. Particular attention is given to some recent developments carried out in the machine learning field: the deep learning approach, which is pointed out as a future key player in the virtual screening landscape.


Author(s):  
William B. Rouse

This book discusses the use of models and interactive visualizations to explore designs of systems and policies in determining whether such designs would be effective. Executives and senior managers are very interested in what “data analytics” can do for them and, quite recently, what the prospects are for artificial intelligence and machine learning. They want to understand and then invest wisely. They are reasonably skeptical, having experienced overselling and under-delivery. They ask about reasonable and realistic expectations. Their concern is with the futurity of decisions they are currently entertaining. They cannot fully address this concern empirically. Thus, they need some way to make predictions. The problem is that one rarely can predict exactly what will happen, only what might happen. To overcome this limitation, executives can be provided predictions of possible futures and the conditions under which each scenario is likely to emerge. Models can help them to understand these possible futures. Most executives find such candor refreshing, perhaps even liberating. Their job becomes one of imagining and designing a portfolio of possible futures, assisted by interactive computational models. Understanding and managing uncertainty is central to their job. Indeed, doing this better than competitors is a hallmark of success. This book is intended to help them understand what fundamentally needs to be done, why it needs to be done, and how to do it. The hope is that readers will discuss this book and develop a “shared mental model” of computational modeling in the process, which will greatly enhance their chances of success.


Sign in / Sign up

Export Citation Format

Share Document