scholarly journals Cystic Fibrosis-Modulated Phenotypic Changes of Pseudomonas aeruginosa May Be a Critical Determinant for Respiratory Infections and Unresponsiveness to Antimicrobial Agents

2019 ◽  
Vol 32 (1) ◽  
pp. 22-28
Author(s):  
Meryem Ozlem Ersoy ◽  
◽  
Serhan Sakarya ◽  
Necati Gunay ◽  
Ozgenur Yilmaz ◽  
...  
2020 ◽  
Vol 202 (18) ◽  
Author(s):  
Giulia Orazi ◽  
Fabrice Jean-Pierre ◽  
George A. O’Toole

ABSTRACT The thick mucus within the airways of individuals with cystic fibrosis (CF) promotes frequent respiratory infections that are often polymicrobial. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most prevalent pathogens that cause CF pulmonary infections, and both are among the most common etiologic agents of chronic wound infections. Furthermore, the ability of P. aeruginosa and S. aureus to form biofilms promotes the establishment of chronic infections that are often difficult to eradicate using antimicrobial agents. In this study, we found that multiple LasR-regulated exoproducts of P. aeruginosa, including 2-heptyl-4-hydroxyquinoline N-oxide (HQNO), siderophores, phenazines, and rhamnolipids, likely contribute to the ability of P. aeruginosa PA14 to shift S. aureus Newman norfloxacin susceptibility profiles. Here, we observe that exposure to P. aeruginosa exoproducts leads to an increase in intracellular norfloxacin accumulation by S. aureus. We previously showed that P. aeruginosa supernatant dissipates the S. aureus membrane potential, and furthermore, depletion of the S. aureus proton motive force recapitulates the effect of the P. aeruginosa PA14 supernatant on shifting norfloxacin sensitivity profiles of biofilm-grown S. aureus Newman. From these results, we hypothesize that exposure to P. aeruginosa PA14 exoproducts leads to increased uptake of the drug and/or an impaired ability of S. aureus Newman to efflux norfloxacin. Surprisingly, the effect observed here of P. aeruginosa PA14 exoproducts on S. aureus Newman susceptibility to norfloxacin seemed to be specific to these strains and this antibiotic. Our results illustrate that microbially derived products can alter the ability of antimicrobial agents to kill bacterial biofilms. IMPORTANCE Pseudomonas aeruginosa and Staphylococcus aureus are frequently coisolated from multiple infection sites, including the lungs of individuals with cystic fibrosis (CF) and nonhealing diabetic foot ulcers. Coinfection with P. aeruginosa and S. aureus has been shown to produce worse outcomes compared to infection with either organism alone. Furthermore, the ability of these pathogens to form biofilms enables them to cause persistent infection and withstand antimicrobial therapy. In this study, we found that P. aeruginosa-secreted products dramatically increase the ability of the antibiotic norfloxacin to kill S. aureus biofilms. Understanding how interspecies interactions alter the antibiotic susceptibility of bacterial biofilms may inform treatment decisions and inspire the development of new therapeutic strategies.


2020 ◽  
Author(s):  
Giulia Orazi ◽  
Fabrice Jean-Pierre ◽  
George A. O’Toole

AbstractThe thick mucus within the airways of individuals with cystic fibrosis (CF) promotes frequent respiratory infections that are often polymicrobial. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most prevalent pathogens that cause CF pulmonary infections, and both have been associated with worse lung function. Furthermore, the ability of P. aeruginosa and S. aureus to form biofilms promotes the establishment of chronic infections that are often difficult to eradicate using antimicrobial agents. In this study, we found that multiple LasR-regulated exoproducts of P. aeruginosa, including HQNO, siderophores, phenazines, and rhamnolipids, likely contribute to the ability of P. aeruginosa to shift S. aureus norfloxacin susceptibility profiles. Here, we observe that exposure to P. aeruginosa exoproducts leads to an increase in intracellular norfloxacin accumulation by S. aureus. We previously showed that P. aeruginosa supernatant dissipates S. aureus membrane potential, and furthermore, depletion of the S. aureus proton-motive force recapitulates the effect of P. aeruginosa supernatant on shifting norfloxacin sensitivity profiles of biofilm-grown S. aureus. From these results, we hypothesize that exposure to P. aeruginosa exoproducts leads to increased uptake of the drug and/or an impaired ability of S. aureus to efflux norfloxacin. Our results illustrate that microbially-derived products can greatly alter the ability of antimicrobial agents to kill bacterial biofilms.ImportancePseudomonas aeruginosa and Staphylococcus aureus are frequently co-isolated from multiple infection sites, including the lungs of individuals with cystic fibrosis (CF) and non-healing diabetic foot ulcers. Co-infection with P. aeruginosa and S. aureus has been shown to produce worse outcomes compared to infection with one organism alone. Furthermore, the ability of these pathogens to form biofilms enables them to cause persistent infection and withstand antimicrobial therapy. In this study, we found that P. aeruginosa-secreted products dramatically increase the ability of the antibiotic norfloxacin to kill S. aureus biofilms. Understanding how interspecies interactions alter the antibiotic susceptibility of bacterial biofilms may inform treatment decisions and inspire the development of new therapeutic strategies.


2018 ◽  
Vol 314 (4) ◽  
pp. L635-L641 ◽  
Author(s):  
Manon Ruffin ◽  
Lucie Roussel ◽  
Émilie Maillé ◽  
Simon Rousseau ◽  
Emmanuelle Brochiero

Cystic fibrosis patients exhibit chronic Pseudomonas aeruginosa respiratory infections and sustained proinflammatory state favoring lung tissue damage and remodeling, ultimately leading to respiratory failure. Loss of cystic fibrosis transmembrane conductance regulator (CFTR) function is associated with MAPK hyperactivation and increased cytokines expression, such as interleukin-8 [chemoattractant chemokine (C-X-C motif) ligand 8 (CXCL8)]. Recently, new therapeutic strategies directly targeting the basic CFTR defect have been developed, and ORKAMBI (Vx-809/Vx-770 combination) is the only Food and Drug Administration-approved treatment for CF patients homozygous for the F508del mutation. Here we aimed to determine the effect of the Vx-809/Vx-770 combination on the induction of the inflammatory response by fully differentiated primary bronchial epithelial cell cultures from CF patients carrying F508del mutations, following exposure to P. aeruginosa exoproducts. Our data unveiled that CFTR functional rescue with Vx-809/Vx-770 drastically reduces CXCL8 (as well as CXCL1 and CXCL2) transcripts and p38 MAPK phosphorylation in response to P. aeruginosa exposure through a CFTR-dependent mechanism. These results suggest that ORKAMBI has anti-inflammatory properties that could decrease lung inflammation and contribute to the observed beneficial impact of this treatment in CF patients.


1999 ◽  
Vol 43 (12) ◽  
pp. 2877-2880 ◽  
Author(s):  
Ribhi M. Shawar ◽  
David L. MacLeod ◽  
Richard L. Garber ◽  
Jane L. Burns ◽  
Jenny R. Stapp ◽  
...  

ABSTRACT The in vitro activity of tobramycin was compared with those of six other antimicrobial agents against 1,240 Pseudomonas aeruginosa isolates collected from 508 patients with cystic fibrosis during pretreatment visits as part of the phase III clinical trials of tobramycin solution for inhalation. The tobramycin MIC at which 50% of isolates are inhibited (MIC50) and MIC90 were 1 and 8 μg/ml, respectively. Tobramycin was the most active drug tested and also showed good activity against isolates resistant to multiple antibiotics. The isolates were less frequently resistant to tobramycin (5.4%) than to ceftazidime (11.1%), aztreonam (11.9%), amikacin (13.1%), ticarcillin (16.7%), gentamicin (19.3%), or ciprofloxacin (20.7%). For all antibiotics tested, nonmucoid isolates were more resistant than mucoid isolates. Of 56 isolates for which the tobramycin MIC was ≥16 μg/ml and that were investigated for resistance mechanisms, only 7 (12.5%) were shown to possess known aminoglycoside-modifying enzymes; the remaining were presumably resistant by an incompletely understood mechanism often referred to as “impermeability.”


2018 ◽  
Vol 62 (11) ◽  
Author(s):  
Vanessa E. Rees ◽  
Rajbharan Yadav ◽  
Kate E. Rogers ◽  
Jürgen B. Bulitta ◽  
Veronika Wirth ◽  
...  

ABSTRACT Hypermutable Pseudomonas aeruginosa organisms are prevalent in chronic respiratory infections and have been associated with reduced lung function in cystic fibrosis (CF); these isolates can become resistant to all antibiotics in monotherapy. This study aimed to evaluate the time course of bacterial killing and resistance of meropenem and ciprofloxacin in combination against hypermutable and nonhypermutable P. aeruginosa. Static concentration time-kill experiments over 72 h assessed meropenem and ciprofloxacin in mono- and combination therapies against PAO1 (nonhypermutable), PAOΔmutS (hypermutable), and hypermutable isolates CW8, CW35, and CW44 obtained from CF patients with chronic respiratory infections. Meropenem (1 or 2 g every 8 h [q8h] as 3-h infusions and 3 g/day as a continuous infusion) and ciprofloxacin (400 mg q8h as 1-h infusions) in monotherapies and combinations were further evaluated in an 8-day hollow-fiber infection model study (HFIM) against CW44. Concentration-time profiles in lung epithelial lining fluid reflecting the pharmacokinetics in CF patients were simulated and counts of total and resistant bacteria determined. All data were analyzed by mechanism-based modeling (MBM). In the HFIM, all monotherapies resulted in rapid regrowth with resistance at 48 h. The maximum daily doses of 6 g meropenem (T>MIC of 80% to 88%) and 1.2 g ciprofloxacin (area under the concentration-time curve over 24 h in the steady state divided by the MIC [AUC/MIC], 176), both given intermittently, in monotherapy failed to suppress regrowth and resulted in substantial emergence of resistance (≥7.6 log10 CFU/ml resistant populations). The combination of these regimens achieved synergistic killing and suppressed resistance. MBM with subpopulation and mechanistic synergy yielded unbiased and precise curve fits. Thus, the combination of 6 g/day meropenem plus ciprofloxacin holds promise for future clinical evaluation against infections by susceptible hypermutable P. aeruginosa.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Stephen K. Dolan ◽  
Michael Kohlstedt ◽  
Stephen Trigg ◽  
Pedro Vallejo Ramirez ◽  
Clemens F. Kaminski ◽  
...  

ABSTRACT Pseudomonas aeruginosa is an opportunistic human pathogen, particularly noted for causing infections in the lungs of people with cystic fibrosis (CF). Previous studies have shown that the gene expression profile of P. aeruginosa appears to converge toward a common metabolic program as the organism adapts to the CF airway environment. However, we still have only a limited understanding of how these transcriptional changes impact metabolic flux at the systems level. To address this, we analyzed the transcriptome, proteome, and fluxome of P. aeruginosa grown on glycerol or acetate. These carbon sources were chosen because they are the primary breakdown products of an airway surfactant, phosphatidylcholine, which is known to be a major carbon source for P. aeruginosa in CF airways. We show that the fluxes of carbon throughout central metabolism are radically different among carbon sources. For example, the newly recognized “EDEMP cycle” (which incorporates elements of the Entner-Doudoroff [ED] pathway, the Embden-Meyerhof-Parnas [EMP] pathway, and the pentose phosphate [PP] pathway) plays an important role in supplying NADPH during growth on glycerol. In contrast, the EDEMP cycle is attenuated during growth on acetate, and instead, NADPH is primarily supplied by the reaction catalyzed by isocitrate dehydrogenase(s). Perhaps more importantly, our proteomic and transcriptomic analyses revealed a global remodeling of gene expression during growth on the different carbon sources, with unanticipated impacts on aerobic denitrification, electron transport chain architecture, and the redox economy of the cell. Collectively, these data highlight the remarkable metabolic plasticity of P. aeruginosa; that plasticity allows the organism to seamlessly segue between different carbon sources, maximizing the energetic yield from each. IMPORTANCE Pseudomonas aeruginosa is an opportunistic human pathogen that is well known for causing infections in the airways of people with cystic fibrosis. Although it is clear that P. aeruginosa is metabolically well adapted to life in the CF lung, little is currently known about how the organism metabolizes the nutrients available in the airways. In this work, we used a combination of gene expression and isotope tracer (“fluxomic”) analyses to find out exactly where the input carbon goes during growth on two CF-relevant carbon sources, acetate and glycerol (derived from the breakdown of lung surfactant). We found that carbon is routed (“fluxed”) through very different pathways during growth on these substrates and that this is accompanied by an unexpected remodeling of the cell’s electron transfer pathways. Having access to this “blueprint” is important because the metabolism of P. aeruginosa is increasingly being recognized as a target for the development of much-needed antimicrobial agents.


2013 ◽  
Vol 7 (1-2) ◽  
pp. 1
Author(s):  
Anju Anand ◽  
Elizabeth Tullis ◽  
Anne Stephenson ◽  
J. Curtis Nickel ◽  
Michael J. Leveridge

Patients with cystic fibrosis (CF) commonly suffer chronic respiratory infections, although systemic dissemination is relatively rare. Acute bacterial prostatitis presents dramatically and is believed to be mostly caused by local migration (with or without instrumentation) of the lower urinary tract and presents with a predictable microbial etiology. We report a case of a 26-year-old man presenting with acute Pseudomonas aeruginosa bacterial prostatitis due to hematogenous propagation from a chronic pulmonary infection.


mSphere ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Xuan Qin ◽  
Chuan Zhou ◽  
Danielle M. Zerr ◽  
Amanda Adler ◽  
Amin Addetia ◽  
...  

ABSTRACTClinical isolates ofPseudomonas aeruginosafrom patients with cystic fibrosis (CF) are known to differ from those associated with non-CF hosts by colony morphology, drug susceptibility patterns, and genomic hypermutability.Pseudomonas aeruginosaisolates from CF patients have long been recognized for their overall reduced rate of antimicrobial susceptibility, but their intraclonal MIC heterogeneity has long been overlooked. Using two distinct cohorts of clinical strains (n= 224 from 56 CF patients,n= 130 from 68 non-CF patients) isolated in 2013, we demonstrated profound Etest MIC heterogeneity in CFP. aeruginosaisolates in comparison to non-CFP. aeruginosaisolates. On the basis of whole-genome sequencing of 19 CFP. aeruginosaisolates from 9 patients with heterogeneous MICs, the core genome phylogenetic tree confirmed the within-patient CFP. aeruginosaclonal lineage along with considerable coding sequence variability. No extrachromosomal DNA elements or previously characterized antibiotic resistance mutations could account for the wide divergence in antimicrobial MICs betweenP. aeruginosacoisolates, though many heterogeneous mutations in efflux and porin genes and their regulators were present. A unique OprD sequence was conserved among the majority of isolates of CFP. aeruginosaanalyzed, suggesting a pseudomonal response to selective pressure that is common to the isolates. Genomic sequence data also suggested that CF pseudomonal hypermutability was not entirely due to mutations inmutL,mutS, anduvr. We conclude that the net effect of hundreds of adaptive mutations, both shared between clonally related isolate pairs and unshared, accounts for their highly heterogeneous MIC variances. We hypothesize that this heterogeneity is indicative of the pseudomonal syntrophic-like lifestyle under conditions of being “locked” inside a host focal airway environment for prolonged periods.IMPORTANCEPatients with cystic fibrosis endure “chronic focal infections” with a variety of microorganisms. One microorganism,Pseudomonas aeruginosa, adapts to the host and develops resistance to a wide range of antimicrobials. Interestingly, as the infection progresses, multiple isogenic strains ofP. aeruginosaemerge and coexist within the airways of these patients. Despite a common parental origin, the multiple strains ofP. aeruginosadevelop vastly different susceptibility patterns to actively used antimicrobial agents—a phenomenon we define as “heterogeneous MICs.” By sequencing pairs ofP. aeruginosaisolates displaying heterogeneous MICs, we observed widespread isogenic gene lesions in drug transporters, DNA mismatch repair machinery, and many other structural or cellular functions. Coupled with the heterogeneous MICs, these genetic lesions demonstrated a symbiotic response to host selection and suggested evolution of a multicellular syntrophic bacterial lifestyle. Current laboratory standard interpretive criteria do not address the emergence of heterogeneous growth and susceptibilitiesin vitrowith treatment implications.


Sign in / Sign up

Export Citation Format

Share Document