scholarly journals Big Data in Manufacturing

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Matthew N. O. Sadiku ◽  
Tolulope J. Ashaolu ◽  
Abayomi Ajayi-Majebi ◽  
Sarhan M. Musa

In the data-driven economy, turning data into actionable analytics is the best way to boost efficiency, quality, and productivity. The manufacturing processes are getting more and more complex due to increasing demands. Manufacturers of all types of products are finding significant value in big data. The application of big data technologies in manufacturing sector is a relatively new interdisciplinary research area which incorporates automation, engineering, and data analytics. This paper provides an introduction on the use of big data in manufacturing.

Author(s):  
Tao Cheng ◽  
Tongxin Chen

AbstractScientists have an enduring interest in understanding urban crime and developing security strategies for mitigating this problem. This chapter reviews the progress made in this topic from historic criminology to data-driven policing. It first reviews the broad implications of urban security and its implementation in practice. Next, it focuses on the tools to prevent urban crime and improve security, from analytical crime hotspot mapping to police resource allocation. Finally, a manifesto of data-driven policing is proposed, with its practical demand for efficient security strategies and the development of big data technologies. It emphasizes that data-driven strategies could be applied in cities due to their promising effectiveness for crime prevention and security improvement.


Web Services ◽  
2019 ◽  
pp. 1430-1443
Author(s):  
Louise Leenen ◽  
Thomas Meyer

The Governments, military forces and other organisations responsible for cybersecurity deal with vast amounts of data that has to be understood in order to lead to intelligent decision making. Due to the vast amounts of information pertinent to cybersecurity, automation is required for processing and decision making, specifically to present advance warning of possible threats. The ability to detect patterns in vast data sets, and being able to understanding the significance of detected patterns are essential in the cyber defence domain. Big data technologies supported by semantic technologies can improve cybersecurity, and thus cyber defence by providing support for the processing and understanding of the huge amounts of information in the cyber environment. The term big data analytics refers to advanced analytic techniques such as machine learning, predictive analysis, and other intelligent processing techniques applied to large data sets that contain different data types. The purpose is to detect patterns, correlations, trends and other useful information. Semantic technologies is a knowledge representation paradigm where the meaning of data is encoded separately from the data itself. The use of semantic technologies such as logic-based systems to support decision making is becoming increasingly popular. However, most automated systems are currently based on syntactic rules. These rules are generally not sophisticated enough to deal with the complexity of decisions required to be made. The incorporation of semantic information allows for increased understanding and sophistication in cyber defence systems. This paper argues that both big data analytics and semantic technologies are necessary to provide counter measures against cyber threats. An overview of the use of semantic technologies and big data technologies in cyber defence is provided, and important areas for future research in the combined domains are discussed.


Author(s):  
Soraya Sedkaoui ◽  
Mounia Khelfaoui

This chapter treats the movement that marks, affects, and transforms any part of business and society. It is about big data that is creating, and the value generating that companies, startups, and entrepreneurs have to derive through sophisticated methods and advanced tools. This chapter suggests that analytics can be of crucial importance for business and entrepreneurial practices if correctly aligned with business process needs and can also lead to significant improvement of their performance and quality of the decisions they make. So, the main purpose of this chapter are exploring why small business, entrepreneur, and startups have to use data analytics and how they can integrate, operationally, analytics methods to extract value and create new opportunities.


2020 ◽  
pp. 1499-1521
Author(s):  
Sukhpal Singh Gill ◽  
Inderveer Chana ◽  
Rajkumar Buyya

Cloud computing has transpired as a new model for managing and delivering applications as services efficiently. Convergence of cloud computing with technologies such as wireless sensor networking, Internet of Things (IoT) and Big Data analytics offers new applications' of cloud services. This paper proposes a cloud-based autonomic information system for delivering Agriculture-as-a-Service (AaaS) through the use of cloud and big data technologies. The proposed system gathers information from various users through preconfigured devices and IoT sensors and processes it in cloud using big data analytics and provides the required information to users automatically. The performance of the proposed system has been evaluated in Cloud environment and experimental results show that the proposed system offers better service and the Quality of Service (QoS) is also better in terms of QoS parameters.


2018 ◽  
Vol 27 (01) ◽  
pp. 234-236 ◽  
Author(s):  
Kwok-Chan Lun

SummaryHealth informatics has benefitted from the development of Info-Communications Technology (ICT) over the last fifty years. Advances in ICT in healthcare have now started to spur advances in Data Technology as hospital information systems, electronic health and medical records, mobile devices, social media and Internet Of Things (IOT) are making a substantial impact on the generation of data. It is timely for healthcare institutions to recognize data as a corporate asset and promote a data-driven culture within the institution. It is both strategic and timely for IMIA, as an international organization in health informatics, to take the lead to promote a data-driven culture in healthcare organizations. This can be achieved by expanding the terms of reference of its existing Working Group on Data Mining and Big Data Analysis to include (1) data analytics with special reference to healthcare, (2) big data tools and solutions, (3) bridging information technology and data technology and (4) data quality issues and challenges.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Roberto Salazar-Reyna ◽  
Fernando Gonzalez-Aleu ◽  
Edgar M.A. Granda-Gutierrez ◽  
Jenny Diaz-Ramirez ◽  
Jose Arturo Garza-Reyes ◽  
...  

PurposeThe objective of this paper is to assess and synthesize the published literature related to the application of data analytics, big data, data mining and machine learning to healthcare engineering systems.Design/methodology/approachA systematic literature review (SLR) was conducted to obtain the most relevant papers related to the research study from three different platforms: EBSCOhost, ProQuest and Scopus. The literature was assessed and synthesized, conducting analysis associated with the publications, authors and content.FindingsFrom the SLR, 576 publications were identified and analyzed. The research area seems to show the characteristics of a growing field with new research areas evolving and applications being explored. In addition, the main authors and collaboration groups publishing in this research area were identified throughout a social network analysis. This could lead new and current authors to identify researchers with common interests on the field.Research limitations/implicationsThe use of the SLR methodology does not guarantee that all relevant publications related to the research are covered and analyzed. However, the authors' previous knowledge and the nature of the publications were used to select different platforms.Originality/valueTo the best of the authors' knowledge, this paper represents the most comprehensive literature-based study on the fields of data analytics, big data, data mining and machine learning applied to healthcare engineering systems.


Sign in / Sign up

Export Citation Format

Share Document