scholarly journals Recognition of Sad and Happy Facial Expressions – Lateralization and Association with Depressive Symptoms

Author(s):  
Maida Koso-Drljević ◽  
Meri Miličević

The aim of the study was to test two assumptions about the lateralization of the processing of emotional facial expressions: the assumption of right hemisphere dominance and the valence assumption and to egsamine the influence of gender of the presented stimulus (chimera) and depression as an emotional state of participants. The sample consisted of 83 female students, with an average age of 20 years. Participants solved the Task of Recognizing Emotional Facial Expressions on a computer and then completed the DASS-21, Depression subscale. The results of the study partially confirmed the assumption of valence for the dependent variable - the accuracy of the response. Participants were recognizing more accurately the emotion of sadness than happiness when it is presented on the left side of the face, which is consistent with the valence hypothesis, according to which the right hemisphere is responsible for recognizing negative emotions. However, when it comes to the right side of the face, participants were equally accurately recognizing the emotion of sadness and happiness, which is not consistent with the valence hypothesis. The main effect of the gender of the chimera was statistically significant for the accuracy of the response, the recognition accuracy was higher for the male chimeras compared to the female. A statistically significant negative correlation was obtained between the variable sides of the face (left and right) with the achieved result on the depression subscale for the dependent variable - reaction time. The higher the score on the depressive subscale, the slower (longer) is reaction time to the presented chimera, both on the left and on the right.

Author(s):  
Chiara Ferrari ◽  
Lucile Gamond ◽  
Marcello Gallucci ◽  
Tomaso Vecchi ◽  
Zaira Cattaneo

Abstract. Converging neuroimaging and patient data suggest that the dorsolateral prefrontal cortex (DLPFC) is involved in emotional processing. However, it is still not clear whether the DLPFC in the left and right hemisphere is differentially involved in emotion recognition depending on the emotion considered. Here we used transcranial magnetic stimulation (TMS) to shed light on the possible causal role of the left and right DLPFC in encoding valence of positive and negative emotional facial expressions. Participants were required to indicate whether a series of faces displayed a positive or negative expression, while TMS was delivered over the right DLPFC, the left DLPFC, and a control site (vertex). Interfering with activity in both the left and right DLPFC delayed valence categorization (compared to control stimulation) to a similar extent irrespective of emotion type. Overall, we failed to demonstrate any valence-related lateralization in the DLPFC by using TMS. Possible methodological limitations are discussed.


2014 ◽  
Vol 20 (4) ◽  
pp. 434-443 ◽  
Author(s):  
Sarit Yaakoby-Rotem ◽  
Ronny Geva

AbstractVisuospatial attention-networks are represented in both hemispheres, with right-hemisphere dominance in adults. Little is known about the lateralization of the attentional-networks in children. To assess the lateralization of attentional-networks in children aged 5 years, performance on a Lateralized-Attention-Network-Test specifically designed for children (LANT-C) was compared with performance on the Attention-Network-Test for children (ANT-C). Participants were 82 children, aged 5–6 years (55% boys, middle–class, mainstream schooling). They were examined with both the ANT-C and the LANT-C along with evaluation of intelligence and attention questionnaires. Multiple analysis of variance showed a main effect for network, with high efficiency for orienting and lower executive efficiency (accuracy; p < .001; η2 = .282). An effect for procedure, elucidated higher efficiency in the ANT-C relatively to the LANT-C (accuracy; p < .01; η2 = .097). A procedure × network interaction effect was also found, showing that this procedure difference is present in the alerting and executive networks (accuracy; p < .05; η2 = .096). LANT-C analysis showed a left visual-field advantage in alerting, (accuracy; p < .05; η2 = .066), while executing with the right hand benefitted executive performance (response-time; p < .05; η2 = .06). Results extend previous findings manifesting a right-hemisphere advantage in children's alerting-attention, pointing to the importance of lateralization of brain function to the understanding of the integrity of attention-networks in children. (JINS, 2014, 20, 1–10)


2021 ◽  
Vol 11 (9) ◽  
pp. 1203 ◽  
Author(s):  
Sara Borgomaneri ◽  
Francesca Vitale ◽  
Simone Battaglia ◽  
Alessio Avenanti

The ability to rapidly process others’ emotional signals is crucial for adaptive social interactions. However, to date it is still unclear how observing emotional facial expressions affects the reactivity of the human motor cortex. To provide insights on this issue, we employed single-pulse transcranial magnetic stimulation (TMS) to investigate corticospinal motor excitability. Healthy participants observed happy, fearful and neutral pictures of facial expressions while receiving TMS over the left or right motor cortex at 150 and 300 ms after picture onset. In the early phase (150 ms), we observed an enhancement of corticospinal excitability for the observation of happy and fearful emotional faces compared to neutral expressions specifically in the right hemisphere. Interindividual differences in the disposition to experience aversive feelings (personal distress) in interpersonal emotional contexts predicted the early increase in corticospinal excitability for emotional faces. No differences in corticospinal excitability were observed at the later time (300 ms) or in the left M1. These findings support the notion that emotion perception primes the body for action and highlights the role of the right hemisphere in implementing a rapid and transient facilitatory response to emotional arousing stimuli, such as emotional facial expressions.


2004 ◽  
Vol 15 (1-2) ◽  
pp. 23-34 ◽  
Author(s):  
Manas K. Mandal ◽  
Nalini Ambady

Recent research indicates that (a) the perception and expression of facial emotion are lateralized to a great extent in the right hemisphere, and, (b) whereas facial expressions of emotion embody universal signals, culture-specific learning moderates the expression and interpretation of these emotions. In the present article, we review the literature on laterality and universality, and propose that, although some components of facial expressions of emotion are governed biologically, others are culturally influenced. We suggest that the left side of the face is more expressive of emotions, is more uninhibited, and displays culture-specific emotional norms. The right side of face, on the other hand, is less susceptible to cultural display norms and exhibits more universal emotional signals.


2018 ◽  
Author(s):  
Alfredo Spagna ◽  
Tae Hyeong Kim ◽  
Tingting Wu ◽  
Jin Fan

AbstractOver forty years have passed since the first evidence showing the unbalanced attentional allocation of humans across the two visual fields, and since then, a wealth of behavioral, neurophysiological, and clinical data increasingly showed a right hemisphere dominance for orienting of attention. However, inconsistent evidence exists regarding the right-hemisphere dominance for executive control of attention, possibly due to a lack of consideration of its dynamics with the alerting and orienting functions. In this study, we used a version of the Attentional Network Test with lateralized presentation of the stimuli to the left visual field (processed by the right hemisphere, RH) and right visual field (processed by the left hemisphere, LH) to examine visual field differences in executive control of attention under conditions of alerting or orienting. Analyses of behavioral performance (reaction time and error rate) showed a more efficient executive control (reduced conflict effect) in the RH compared to the LH for the reaction time, under conditions of increased alerting and of informative spatial orienting. These results demonstrate the right-hemisphere superiority for executive control, and that this effect depends on the activation of the alerting and orienting functions.


2019 ◽  
Vol 9 (6) ◽  
pp. 142 ◽  
Author(s):  
Joanie Drapeau ◽  
Nathalie Gosselin ◽  
Isabelle Peretz ◽  
Michelle McKerral

The present study aimed to measure neural information processing underlying emotional recognition from facial expressions in adults having sustained a mild traumatic brain injury (mTBI) as compared to healthy individuals. We thus measured early (N1, N170) and later (N2) event-related potential (ERP) components during presentation of fearful, neutral, and happy facial expressions in 10 adults with mTBI and 11 control participants. Findings indicated significant differences between groups, irrespective of emotional expression, in the early attentional stage (N1), which was altered in mTBI. The two groups showed similar perceptual integration of facial features (N170), with greater amplitude for fearful facial expressions in the right hemisphere. At a higher-level emotional discrimination stage (N2), both groups demonstrated preferential processing for fear as compared to happiness and neutrality. These findings suggest a reduced early selective attentional processing following mTBI, but no impact on the perceptual and higher-level cognitive processes stages. This study contributes to further improving our comprehension of attentional versus emotional recognition following a mild TBI.


1990 ◽  
Vol 2 (3) ◽  
pp. 239-245 ◽  
Author(s):  
Michael S. Gazzaniga ◽  
Charlotte S. Smylie

The capacity of each disconnected cerebral hemisphere to control a variety of facial postures was examined in three split-brain patients. The dynamics of facial posturing were analyzed in 30-msec optical disc frames that were generated off videotape recordings of each patient's response to lateralized stimuli. The results revealed that commands presented to the left hemisphere effecting postures of the lower facial muscles showed a marked asymmetry, with the right side of the face sometimes responding up to 180 msec before the left side of the face. Commands presented to the right hemisphere elicited a response only if the posture involved moving the upper facial muscles. Spontaneous postures filmed during free conversation were symmetrical. The results suggest that while either hemisphere can generate spontaneous facial expressions only the left hemisphere is efficient at generating voluntaly expressions. This contrasts sharply with the fact that both hemispheres can carry out a wide variety of other voluntary movements with the hand and foot.


2021 ◽  
Vol 15 ◽  
Author(s):  
E. Darcy Burgund

Major theories of hemisphere asymmetries in facial expression processing predict right hemisphere dominance for negative facial expressions of disgust, fear, and sadness, however, some studies observe left hemisphere dominance for one or more of these expressions. Research suggests that tasks requiring the identification of six basic emotional facial expressions (angry, disgusted, fearful, happy, sad, and surprised) are more likely to produce left hemisphere involvement than tasks that do not require expression identification. The present research investigated this possibility in two experiments that presented six basic emotional facial expressions to the right or left hemisphere using a divided-visual field paradigm. In Experiment 1, participants identified emotional expressions by pushing a key corresponding to one of six labels. In Experiment 2, participants detected emotional expressions by pushing a key corresponding to whether an expression was emotional or not. In line with predictions, fearful facial expressions exhibited a left hemisphere advantage during the identification task but not during the detection task. In contrast to predictions, sad expressions exhibited a left hemisphere advantage during both identification and detection tasks. In addition, happy facial expressions exhibited a left hemisphere advantage during the detection task but not during the identification task. Only angry facial expressions exhibited a right hemisphere advantage, and this was only observed when data from both experiments were combined. Together, results highlight the influence of task demands on hemisphere asymmetries in facial expression processing and suggest a greater role for the left hemisphere in negative expressions than predicted by previous theories.


2021 ◽  
pp. 174702182199299
Author(s):  
Mohamad El Haj ◽  
Emin Altintas ◽  
Ahmed A Moustafa ◽  
Abdel Halim Boudoukha

Future thinking, which is the ability to project oneself forward in time to pre-experience an event, is intimately associated with emotions. We investigated whether emotional future thinking can activate emotional facial expressions. We invited 43 participants to imagine future scenarios, cued by the words “happy,” “sad,” and “city.” Future thinking was video recorded and analysed with a facial analysis software to classify whether facial expressions (i.e., happy, sad, angry, surprised, scared, disgusted, and neutral facial expression) of participants were neutral or emotional. Analysis demonstrated higher levels of happy facial expressions during future thinking cued by the word “happy” than “sad” or “city.” In contrast, higher levels of sad facial expressions were observed during future thinking cued by the word “sad” than “happy” or “city.” Higher levels of neutral facial expressions were observed during future thinking cued by the word “city” than “happy” or “sad.” In the three conditions, the neutral facial expressions were high compared with happy and sad facial expressions. Together, emotional future thinking, at least for future scenarios cued by “happy” and “sad,” seems to trigger the corresponding facial expression. Our study provides an original physiological window into the subjective emotional experience during future thinking.


Sign in / Sign up

Export Citation Format

Share Document