scholarly journals Soil solarization improves soil fertility in addition to weed management in sesame under subtropical conditions of Pakistan

2021 ◽  
Vol 39 ◽  
Author(s):  
Muhammad Ehsan Safdar ◽  
Muhammad Safdar ◽  
Amjed Ali ◽  
Naila Farooq ◽  
Ghulam Sarwar ◽  
...  
2000 ◽  
Vol 66 (2) ◽  
pp. 101-113 ◽  
Author(s):  
S.M Haefele ◽  
D.E Johnson ◽  
S Diallo ◽  
M.C.S Wopereis ◽  
I Janin

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7650 ◽  
Author(s):  
Xian Gu ◽  
Yu Cen ◽  
Liyue Guo ◽  
Caihong Li ◽  
Han Yuan ◽  
...  

The long-term use of herbicides to remove weeds in fallow croplands can impair soil biodiversity, affect the quality of agricultural products, and threaten human health. Consequently, the identification of methods that can effectively limit the weed seed bank and maintain fallow soil fertility without causing soil pollution for the next planting is a critical task. In this study, four weeding treatments were established based on different degrees of disturbance to the topsoil: natural fallow (N), physical clearance (C), deep tillage (D), and sprayed herbicide (H). The changes in the soil weed seed banks, soil nutrients, and soil microbial biomass were carefully investigated. During the fallow period, the C treatment decreased the annual and biennial weed seed bank by 34% against pretreatment, whereas the H treatment did not effectively reduce the weed seed bank. The D treatment had positive effects on the soil fertility, increasing the available nitrogen 108% over that found in the N soil. In addition, a pre-winter deep tillage interfered with the rhizome propagation of perennial weeds. The total biomass of soil bacterial, fungal, and actinomycete in H treatment was the lowest among the four treatments. The biomass of arbuscular mycorrhizal fungi in the N treatment was respectively 42%, 35%, and 91%, higher than that in the C, D, and H treatments. An ecological weeding strategy was proposed based on our findings, which called for exhausting seed banks, blocking seed transmission, and taking advantage of natural opportunities to prevent weed growth for fallow lands. This study could provide a theoretical basis for weed management in fallow fields and organic farming systems.


Weed Science ◽  
2006 ◽  
Vol 54 (02) ◽  
pp. 326-334 ◽  
Author(s):  
Kevin S. Charles ◽  
Mathieu Ngouajio ◽  
Darryl D. Warncke ◽  
Kenneth L. Poff ◽  
Mary K. Hausbeck

Field studies were carried out in Laingsburg, MI, from 2002 to 2004 on Houghton muck soil to assess the impacts of cover crops and soil fertility regimes on weed populations and celery yield. The cover crops were oilseed radish, cereal rye, hairy vetch, and a bare ground control. The fertility rates were full (180, 90, and 450 kg ha−1nitrogen [N], phosphorus pentoxide [P2O5], and potassium oxide [K2O], respectively), half (90, 45, and 225 kg ha−1N, P2O5, and K2O, respectively), and low (90 kg ha−1N). Each cover crop treatment was combined with the low or half rate of fertilizer. An additional treatment with bare ground plus the full rate of fertilizer was added as standard practice. Treatments were maintained in the same location for the duration of the study. Major weed species were common chickweed, prostrate pigweed, shepherd's-purse, common purslane, and yellow nutsedge. Each year, oilseed radish consistently produced the greatest biomass and provided over 98% early season weed biomass suppression. Hairy vetch and cereal rye provided about 70% weed suppression in early spring. Soil fertility level affected weed populations during the 2004 growing season. In 2004, weed biomass in treatments without cover crops or with vetch increased when greater amounts of fertilizer were applied. Within individual fertility levels, higher celery yields were recorded in the oilseed radish plots. For example, in the low fertility rate, celery yield was 34.8, 29.2, 23.9, and 24.4 ton ha−1in the oilseed radish, cereal rye, hairy vetch, and control plots, respectively in 2003. Overall, the results of this experiment indicate that when included in a system where hoeing and hand-weeding are the only weed control methods, cover crops can successfully improve weed management and celery yield on muck soils, allowing reduced fertilizer inputs.


2021 ◽  
Vol 16 (2) ◽  
pp. 215-218
Author(s):  
Banashri Lodh ◽  
S.N. Jena ◽  
R.K. Paikaray ◽  
Manoranjan Satapathy ◽  
Bishnupriya Patra ◽  
...  

Author(s):  
A.A. Chavan ◽  
W.N. Narkhede ◽  
H.S. Garud

Background: Weeds are widely reported as a key constraint in organic agriculture. Soybean-chickpea is important cropping sequence adopted in Maharashtra State under irrigated condition. Weed management is a serious problem in both the crop and it mostly controlled through chemical weed control. Today, widespread use of herbicides has resulted in purporated environmental and health problem as well as residual problems to succeeding crops. Now a days residue free food requirement is high. In organic farming cultural and mechanical methods are necessary to break the weed cycle. So, keeping this point in view present investigation was carried out to evaluate organic weed management practices on growth, yield and weed control in soybean-chickpea sequence under irrigated condition. Methods: A field experiment was conducted during Kharif and rabi seasons of 2017-18 and 2018-19. The present investigation consisted of ten weed management practices viz. two hand weeding at 20-25 and 45-50 DAS, one hoeing 20-25 DAS + one hand weeding at 45-50 DAS, soybean + sunhemp incorporation after 35-40 DAS in kharif season and chickpea + safflower (2:1) in rabi season, stale seed bed + reduced spacing + 2 tonne of wheat straw + one hand weeding at 25 DAS, soil mulch at the time of sowing + one hand pulling at 25 DAS, incorporation of neem cake 1.5 tonne/ ha 15 days before sowing + one hand weeding at 25 DAS, soil solarization with 25 μ polythene mulch during summer + one hand weeding at 25 DAS, mulching with straw, weed free and weedy check. Result: The higher values of growth attributes was recorded by weed free treatment which was on par with two hand weeding at 20-25 and 45-50 DAS and soil solarization with 25 μ polythene mulch during summer + one hand weeding at 25 DAS and significantly superior over rest of the treatments during both the year study. Application of stale seed bed with reduced spacing and 2 tonne of wheat straw along with one hand weeding 25 DAS recorded higher soybean equivalent yield followed by soybean + sunhemp incorporation (35-45DAS) in kharif and chickpea + safflower (2:1) in rabi season during both the year. The lower weed density, dry weight and highest weed control efficiency at 40 days after sowing for both monocot and dicot weeds was recorded by weed free treatment followed by soil solarization with 25 μ polythene mulch during summer + one hand weeding at 25 DAS in soybean and chickpea during both the year.


HortScience ◽  
2009 ◽  
Vol 44 (2) ◽  
pp. 263-267 ◽  
Author(s):  
Dario Stefanelli ◽  
Roberto J. Zoppolo ◽  
Ronald L. Perry ◽  
Franco Weibel

In organic apple production systems, orchard floor management is of prime importance because it determines weed management and soil fertility. In this experiment, we evaluated the response of the cultivar Pacific Gala on three rootstocks of different vigor: M.9 NAKB 337, M.9 RN 29, and Supporter 4 (in respective order of vigor from dwarfing to semivigorous). The rootstocks were also evaluated for the response to three orchard floor management systems (OFMSs): mulching using alfalfa hay, flame burning, and shallow strip tillage using the Swiss sandwich system (SSS). The experiment was conducted in an experimental orchard planted in 2000.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 443A-443 ◽  
Author(s):  
Monica Ozores-Hampton ◽  
Phillip A. Stansly ◽  
Thomas A. Obreza

Methyl bromide will be unavailable to conventional vegetable growers in the year 2005, and it cannot be used by organic growers. Chemical alternatives are more expensive and may also be subject to future restrictions. Non-chemical alternatives like solarization and organic amendments are as yet largely unproven but do offer promise of sustainable solutions free of government regulation. The objective of this study was to evaluate the effects of soil-incorporated biosolids and soil solarization on plant growth, yield, and soil fertility. Main plots were a biosolids soil amendment (37 Mg·ha-1 and a non-amended control. Treated main plots had received some type of organic amendment for the previous 6 years. Sub-plots were fumigated with methyl bromide as they had been for 6 years, or non-fumigated. Non-fumigated plots were further split into solarized and non-solarized plots. Bell pepper (Capsicum annuum `X 3R Aladdin') was grown for 8 months. Nitrogen fertilization was reduced to 50% of the recommended rate in the biosolids plots due to expected N mineralization from the biosolids amendment. Plant biomass was higher in the biosolids plots compared with the non-amended plots but there were no differences in marketable pepper yields between biosolids and non-biosolids plots. Plants grown in solarized soil produced lower plant biomass and yields than the methyl bromide and non-fumigated treatments. Soil pH and Mehlich 1-extractable P, K, Ca, Mg, Zn, Mn, Fe, and Cu were higher in biosolids plots than in non-amended control plots. Soil organic matter concentration was 3-fold higher where biosolids were applied compared with non-amended soil. The results suggest that regular organic amendment applications to a sandy Florida soil can increase plant growth and produce similar yields with less inorganic nutrients than are applied in a standard fertilization program. However, methyl bromide and non-fumigated treatments produced higher yields than soil solarization.


Sign in / Sign up

Export Citation Format

Share Document