scholarly journals Pore Size Distribution and Microstructure of Oil Palm Shell Heat Treated at 300 C Followed by Slow or Fast Heating Treatment

2020 ◽  
Vol 9 (1) ◽  
pp. 15-25
Author(s):  
Joko Sulistyo ◽  
Toshimitsu Hata ◽  
Yuji Imamura ◽  
Purnomo Darmaji ◽  
Sri Nugroho Marsoem

Pore size distribution and microstructure development of oil palm shell heat treated at 300ºC and treated at 300ºC and recarbonization at 600ºC followed by slow- or fast heating treatment up to 700ºC were investigated by small angle X-ray scattering (SAXS), N2 gas adsorption and Raman spectroscopy. On oil palm shell heat-treated at 300ºC, slow heating treatment gave the widening micropore along with the ordering microstructure; but fast heating treatment produced charcoal with a narrow diameter of micropore with wider pore size distribution and the disordering microstructure. On oil palm shell heat treated at 300ºC and recarbonization at 600ºC, slow heating treatment contributed on the opening new micropore with ordering microstructure, but some parts of micropore showing inaccessible for N2 gas. Meanwhile, fast heating treatment with the heating rate from 75 to 250ºC/min increased BET surface area with similar pore size distribution and the disordering microstructure.

2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Mingkun Yew ◽  
Mingchian Yew ◽  
Lip Huat Saw ◽  
Siongkang Lim ◽  
Jing Hang Beh ◽  
...  

In this study, the effects of heat-treated and non-treated oil palm shell (OPS) species (dura and tenera) are investigated on the slump, density and compressive strength of oil palm shell concrete (OPSC). Two different species of OPS coarse aggregates are subjected to heat treatment at 65 and 130 °C with the duration of 1 h. The results show that the workability of the OPSC increases significantly with an increase in temperature of heat-treated of the tenera OPS aggregates. It is found that the maximum achievable 28-days and 180-days compressive strength is 51 and 54 MPa, respectively. Furthermore, rapid chloride penetration tests (RCPT), porosity measurement and water absorption tests were performance to signify the effects of heat treatment on different OPS species lightweight concrete (LWC). The use of heat-treated OPS LWC induced the advantageous of reducing the permeability and capillary porosity as well as water absorption. The results showed that the ideal of heat treatment method has enhanced the performance of drying shrinkage. Hence, the findings of this study are of primary importance as they revealed that the heat treatment on OPS species LWC can be used as a new environmentally friendly method to enhance the durability properties and drying shrinkage of OPS LWC.


2017 ◽  
Author(s):  
Ming Kun Yew ◽  
Ming Chian Yew ◽  
Lip Huat Saw ◽  
Bee Chin Ang ◽  
Min Lee Lee ◽  
...  

2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Mingkun Yew ◽  
Mingchian Yew ◽  
Lip Huat Saw ◽  
Siongkang Lim ◽  
Jing Hang Beh ◽  
...  

In this study, the effects of heat-treated and non-treated oil palm shell (OPS) species (dura and tenera) are investigated on the slump, density and compressive strength of oil palm shell concrete (OPSC). Two different species of OPS coarse aggregates are subjected to heat treatment at 65 and 130 °C with the duration of 1 h. The results show that the workability of the OPSC increases significantly with an increase in temperature of heat-treated of the tenera OPS aggregates. It is found that the maximum achievable 28-days and 180-days compressive strength is 51 and 54 MPa, respectively. Furthermore, rapid chloride penetration tests (RCPT), porosity measurement and water absorption tests were performance to signify the effects of heat treatment on different OPS species lightweight concrete (LWC). The use of heat-treated OPS LWC induced the advantageous of reducing the permeability and capillary porosity as well as water absorption. The results showed that the ideal of heat treatment method has enhanced the performance of drying shrinkage. Hence, the findings of this study are of primary importance as they revealed that the heat treatment on OPS species LWC can be used as a new environmentally friendly method to enhance the durability properties and drying shrinkage of OPS LWC.


2019 ◽  
Author(s):  
Paul Iacomi ◽  
Philip L. Llewellyn

Material characterisation through adsorption is a widely-used laboratory technique. The isotherms obtained through volumetric or gravimetric experiments impart insight through their features but can also be analysed to determine material characteristics such as specific surface area, pore size distribution, surface energetics, or used for predicting mixture adsorption. The pyGAPS (python General Adsorption Processing Suite) framework was developed to address the need for high-throughput processing of such adsorption data, independent of the origin, while also being capable of presenting individual results in a user-friendly manner. It contains many common characterisation methods such as: BET and Langmuir surface area, t and α plots, pore size distribution calculations (BJH, Dollimore-Heal, Horvath-Kawazoe, DFT/NLDFT kernel fitting), isosteric heat calculations, IAST calculations, isotherm modelling and more, as well as the ability to import and store data from Excel, CSV, JSON and sqlite databases. In this work, a description of the capabilities of pyGAPS is presented. The code is then be used in two case studies: a routine characterisation of a UiO-66(Zr) sample and in the processing of an adsorption dataset of a commercial carbon (Takeda 5A) for applications in gas separation.


2016 ◽  
Vol 8 (15) ◽  
pp. 47-54
Author(s):  
Haspiadi Haspiadi

The purpose of this research is to know the influence of pressure and use of conplast against mechanical properties which are a Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) of plasterboard. The study is done because still low quality of plasterboard made from a mixture of ashes of oil-palm shell especially of the mechanical properties compared to the controls. The method of this reserach used variation of printed pressure and the addition of conplast. Test result is obtained that the highest value of Modulus of Elasticity (MOE) 90875.94 Kg/cm2, Modulus of Rupture (MOR) 61.16 Kg/cm2 and density values in generally good printed at the pressure 60 g/cm3 and the addition of conplast 25% as well as the composition of the ash of palm shell oil 40%: limestone 40%: cement 15%: fiber 5% and 300 mL of water. ABSTRAK Tujuan dari penelitian ini adalah untuk mengetahui pengaruh tekanan dan penggunaan conplast terhadap sifat mekanik yaitu kuat lentur dan keteguhan patah eternit berbahan dasar abu cangkang sawit. Penelitian ini dilakukan karena masi rendahnya mutu eternit berbahan campuran abu cangkang sawit dari bolier khususnya sifat mekanik dibandingkan dengan kontrol. Metode penelitian yang digunakan adalah dengan variasi tekanan cetak dan penambahan conplast. Hasil uji diperoleh bahwa kuat lentur tertinggi sebesar 90875,94 Kg/cm2 dan keteguhan patah sebesar 61,16 Kg/cm2, yang dicetak pada tekanan 60 g/cm3 dan penambahan conplast 25% dengan komposisi  abu cangkang sawit 40 %: kapur 40 % : semen 15 %: serat 5 % dan air 300 mL.Kata Kunci :  Abu cangkang sawit, conplast, kuat lentur, keteguhan patah.


Sign in / Sign up

Export Citation Format

Share Document