scholarly journals The application of VOI method to shape a strategy of additional exploration

2021 ◽  
Vol 6 (3) ◽  
pp. 61-70
Author(s):  
Konstantin S. Grigoryev ◽  
Andrey V. Roshchin ◽  
Kseniya S. Telnova ◽  
Rinat M. Valiev ◽  
Alexey M. Stolnikov ◽  
...  

Background. An optimal exploration strategy creates a significant share in value of project on exploration stage. The paper describes an example of solving the following tasks: determining the feasibility of additional exploration drilling; evaluating the value of drilling of one or more exploration wells; determining the optimal placement for exploration wells and drilling order. Authors presenting the modification of VoI (Value of Information) method and its application. Materials and methods. Complex probabilistic models were created summarizing main uncertainties and limitations, both geological, technical and technological. At the first stage three equiprobable geological concepts were made. For each concept probabilistic geological modelling was proceeded and then realizations corresponding to values of reserves P10, P50, and P90 were selected. Further, detailed production forecasts and economic estimates were performed. The analysis used the well pad and the corresponding area for exploration drilling as a unit of calculation. In the article the authors introduced the concept of remaining uncertainty. Application of modified VoI method allowed to form ‘dynamic’ (i.e. depending on exploration wells drilling order) range of areas for additional exploration which provide the best decrease of remaining uncertainty. An additional exploration strategy has been formed, which includes the necessary and sufficient number of wells and their drilling order. A decision tree was created depending on the success or failure of each subsequent exploration well. Results. The use of the modified VoI approach made it possible to achieve the objectives and obtain economical estimates, all of which combined to facilitate the adoption of decisions. As a result, a program for two exploration well drilling was created which would reduce the uncertainty by 90% from its initial value. Conclusions: The adopted VoI method could be applied to fields at the stage of additional exploration as well as to fields at early exploration stage to develop an exploration drilling strategy.

1985 ◽  
Vol 21 (2) ◽  
pp. 151-154 ◽  
Author(s):  
A. D. Kostylev ◽  
B. B. Danilov ◽  
B. N. Smolyantiskii ◽  
Yu. N. Syryamin ◽  
D. I. Kogan ◽  
...  

Author(s):  
John S. Ketchel ◽  
Pierre M. Larochelle

This paper presents a novel methodology for detecting collisions of cylindrically shaped rigid bodies moving in three dimensions. This algorithm uses line geometry and dual number algebra to exploit the geometry of right circular cylindrical objects to facilitate the detection of collisions. First, the rigid bodies are modelled with infinite length cylinders and a necessary condition for collision is evaluated. If the necessary condition is not satisfied then the two bodies are not capable of collision. If the necessary condition is satisfied then a collision between the bodies may occur and we proceed to the next stage of the algorithm. In the second stage the bodies are modelled with finite length cylinders and a definitive necessary and sufficient collision detection algorithm is employed. The result is a straight-forward and efficient means of detecting collisions of cylindrically shaped bodies moving in three dimensions. This methodology has applications in spatial mechanism design, robot motion planning, workspace analysis of parallel kinematic machines such as Stewart-Gough platforms, nuclear physics, medical research, computer graphics and well drilling. A case study examining a spatial 4C robotic mechanism for self collisions is included.


2020 ◽  
Vol 39 (1) ◽  
pp. 245-252
Author(s):  
Aniceto Elcidio Alves MACIE ◽  
Drielli PEYERL ◽  
Edmilson Moutinho dos SANTOS ◽  
Denise de La Corte BACCI

The present study analyzed the potential of coalbed methane (CBM) generation as a viable alternative energy source of production in the Mozambican coal basins considering the geology, the properties of the coal and the respective potentialities. It should be noted that one of the most important coal bearing sedimentary successions in the world occurs in the Moatize-Minjova coal basin, Mozambique. In the analysis of the rank of the types of coal suitable for the production of CBM, the most recommended are the coal or bituminous type that has high levels of CO2, high calorific value and higher concentration of gas, however, this quality is found in the Moatize-Minjova coal basin. Exploration well drilling data collected by the company ETA STAR Mozambique and analyzed by specific laboratory tests, such as: physical-chemical, mineralogical, geochemical and petrography analyzes, facilitated the knowledge of the geology and the economic viability of the reservoir with a view to determination of the quality and volume of gas contained in the layers of coal as a viable source of energy in the country. Thus, it is anticipated that the result of the pioneer study carried out by the Company ETA STAR Mozambique indicates that this coal basin of Moatize has qualities to generate the coalbed methane. It is also emphasized that the other five coal basins present in the region due to the presented geological characteristics probably have an economically feasible potential for production. In this way, the exploration of the CBM would be a preponderant solution to answer the problematic of the energy demand for the national consumption. However, in order to exploit the CBM's potential in the country, the Government of Mozambique could introduce a specific CBM policy to legally guide the research, exploration, production and consumption of methane gas contained in the coal layers Mozambican.


2021 ◽  
Author(s):  
Muhammad Waqas ◽  
Abdulla Saad Alkobaisi ◽  
Ashraf Yahia ◽  
William H Borland ◽  
Muhammad Atif Nawaz

Abstract An exploration well offshore UAE, which was the first of it's kind, was planned to be drilled from an island and within salt dome. Well planning was based on a structural model that was estimated using coarse 2D surface seismic (with no line crossing planned well location) and gravity measurements. This model, therefore, had a large uncertainty as to the salt location and geometry. Concerns of potential drilling hazards associated with salt required utilizing the ability of borehole seismic to look-ahead of bit to image salt and direct the well such that it would be sufficiently far away from salt face. Pre-job survey planning was first made assuming salt face to the northwest (based on gravity data) of wellhead and that the well would remain outside the salt. To ensure the well remains close, but not too close, Vertical Seismic Profile (VSP) was planned to include Salt Proximity Survey. Just prior to spudding, a surface core indicated salt was, in fact, southeast of wellhead, thus changing the objectives of VSP from locating how far away the well was from salt, to how soon will it exit salt. After survey modeling for four possible scenarios, Look-ahead Zero-Offset and Offset VSPs were acquired using vibroseis at the island, at each of four casing points and rapidly processed to guide drilling next sections. In the 26" section, the well started drilling in salt and there was concern that there would be problems with casing design if the well did not exit salt before 4000 ft. A Zero-Offset and Offset VSP were shot for reflection imaging off the salt face. The survey indicated the salt face was approaching the well but at low rate (due to dip) to ensure an exit before 4000 ft. The well was deviated southeast and it exited the salt at 3620 ft. In the 17.5" section, a second run of Zero-Offset and Offset VSP were acquired indicating the salt face was still moving away from the well toward the northwest. In the 12.25" section, a third set of Zero-Offset and Offset VSP was shot. This survey confirmed the salt face was moving continually northwest and it was suggested the well deviate northwest to remain closer to salt. A large reverse fault was also clearly imaged and confirmed by drilling. In the 8.5" section, the well was drilled northwest at high angle as could be tolerated until it was TDed below target formation "A". The final set of Zero-Offset and Offset VSP results showed the salt was, at the level of formation "A", farther northwest than could be imaged by these VSP. There has been little to no experience of drilling salt dome islands in Abu Dhabi. This paper demonstrated how look-ahead VSP guided exploration well drilling in the salt dome island. Out-of-the-box survey design and rapid turnaround processing successfully aided in imaging location of the salt face and allowed casing points to be made without having to plug back and sidetrack. Once out of the salt, VSP allowed the well to be drilled closer to salt without re-entering it.


Author(s):  
Flemming G. Christiansen ◽  
Finn Dalhoff ◽  
Jørgen A. Bojesen-Koefoed ◽  
James A. Chalmers ◽  
Gregers Dam ◽  
...  

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Christiansen, F. G., Dalhoff, F., Bojesen-Koefoed, J. A., Chalmers, J. A., Dam, G., Marcussen, C., Nøhr-Hansen, H., Nielsen, T., Pedersen, A. K., Riisager, P., & Sønderholm, M. (2000). Petroleum geological activities in West Greenland in 1999. Geology of Greenland Survey Bulletin, 186, 88-96. https://doi.org/10.34194/ggub.v186.5221 _______________ Renewed interest in petroleum exploration in West Greenland led to grants of licences for the Fylla area operated by Statoil in 1996 and the Sisimiut-West area operated by Phillips Petroleum in 1998 (Fig. 1). The first exploration well on one of the spectacular structures in the Fylla area will be drilled in the year 2000. The new exploration strategy is now in place, and a licensing round offshore West Greenland will be held in the year 2001; see details in the Ghexis Newsletter (Ghexis 1999) or the Bureau of Minerals and Petroleum’s homepage: www.bmp.gl.


Author(s):  
Sari Wulandari Hafsari ◽  
Akhmad Rading

<p>Secara geologi Indonesia berada di zona Sabuk Api atau busur vulkanik yang merupakan produk konvergensi berupa subduksi antara lempeng Samudra Hindia-Australia dengan lempeng benua Asia berdasarkan konsep Tektonik lempeng. Potensi Panas bumi Indonesia tercatat sebagai yang terbesar ketiga di dunia dengan potensi cadangan 40%, Direktorat Inventarisasi Sumber Daya Mineral (ESDM) mengidentifikasi 256 daerah panas bumi dengan total potensi mencapai atau sekira 28.617 MW Penggunaan potensi panas bumi Indonesia hingga Tahun 2016 baru mencapai 4% atau sekira 1341 MW sehingga masih perlu ditingkatkan. Target pemerintah tentang kebijakan Energi Nasional terkait penggunaan energi terbarukan sebesar 25% pada tahun 2015, memicu peningkatan kegiatan pencarian dan eksplorasi panas bumi.Penyelidikan Direktorat Inventarisasi ESDM (2006) di Kabupaten Lembata, Nusa Tenggara Timur mencatat tiga lapangan potensi panas bumi yakni : Atadei, Roma dan Adum. Sumber panas bumi umumnya berasosiasi dengan gunungapi menjelang padam maupun masih aktif. Syarat terbentuknya panas bumi adalah adanya sumber panas (magma), batuan reservoir, batuan penudung dan akuifer. Hasil inventarisasi dan eksplorasi. Tulisan ini difokuskan pada perhitungan cadangan yakni energi panas bumi yang kenyataannya dapat diambil dan potensi listrik yang dapat dibangkitkan pada lapangan panas bumi X Kabupaten Lembata, Nusa Tenggara Timur. Tahapan awal dari upaya untuk mengetahui potensi energi panas bumi dimulai dari eksplorasi terencana dan terpadu yang meliputi kegiatan survey geologi, geokimia, geofisika, landaian suhu dan pemboran uji/eksplorasi panas bumi yang diakhiri dengan kegiatan pemboran sumur produksi serta pembangkit power plant untuk listrik jika hasil pemboran uji memberikan gambaran yang positif serta faktor kebutuhan akan energi/listrik.Cadangan energi panas bumi yang kenyataannya dapat diambil di Lapangan panas bumi X adalah 3,94 x 10 11 KJ dan besarnya potensi listrik yang dapat dibangkitkan adalah sebesar 41 Mwe Sehingga Lapangan panas bumi X prospek dan layak untuk dikembangkan sebagai Pembangkit Listrik Tenaga Panas Bumi (PLTP), sehingga kebutuhan listrik masyarakat Kabupaten Lembata sebesar 5 Mwe dapat terpenuhi.</p><p><em>Geologically, Indonesia is in the zone of ring of  Fire or volcanic arc which is a product of convergence in the form of subduction between the Indian-Australian Ocean plate and the Asian continent plate based on the plate tectonic concept. Indonesia's geothermal potential is recorded as the third largest in the world with a potential reserve of 40%, the Directorate of Mineral Resources Inventory (ESDM) identified 256 geothermal areas with a total potential reaching or approximately 28,617 MW The use of Indonesia's geothermal potential until 2016 only reached 4% or approximately 1341 MW so that it still needs to be improved. The government's target of the National Energy policy related to the use of renewable energy by 25% in 2015, triggers an increase in geothermal exploration and exploration activities. </em><em>The investigation of the ESDM Inventory Directorate (2006) in Lembata Regency, East Nusa Tenggara recorded three geothermal potential fields namely: Atadei, Roma and Adum. Geothermal sources are generally associated with near-extinguished volcanoes or are still active. Requirements for geothermal formation are the existence of heat sources (magma), reservoir rocks, capstone and aquifers. Inventory and exploration results. This paper is focused on the calculation of reserves, namely the fact that geothermal energy can be extracted and the potential electricity that can be generated in the geothermal of X field, Lembata Regency, East Nusa Tenggara. The initial stages of the effort to determine the potential for geothermal energy starts from planned and integrated exploration which includes geological, geochemical, geophysical surveying, temperature slope and geothermal test/ exploration drilling which ends with the production well drilling and power plant for electricity if the results test drilling provides a positive picture and energy/electricity demand factors. </em><em>Reserve of geothermal energy which in fact can be taken in the geothermal field X is 3.94 x 1011 KJ and the amount of potential electricity that can be generated is 41 Mwe so that the geothermal of X field prospects and feasible to be developed as a Geothermal Power Plant (PLTP) so that the electricity needs of the Lembata Regency community of 5 MWe can be fulfilled.</em></p>


SPE Journal ◽  
2013 ◽  
Vol 19 (04) ◽  
pp. 564-575 ◽  
Author(s):  
Gabriele Martinelli ◽  
Jo Eidsvik ◽  
Ketil Hokstad ◽  
Ragnar Hauge

Summary The paper presents a new approach for modeling important geological elements, such as reservoir, trap, and source, in a unified statistical model. This joint modeling of these geological variables is useful for reliable prospect evaluation, and provides a framework for consistent decision making under uncertainty. A Bayesian network (BN), involving different kinds of dependency structures, is used to model the correlation within the various geological elements and to couple the elements. On the basis of the constructed network, an optimal sequential exploration strategy is established with dynamic programming (DP). This strategy is useful for selecting the first prospect to explore and for making the decisions that should follow, depending on the outcome of the first well. A risk-neutral decision maker will continue exploring new wells as long as the expected profit is positive. The model and choice of exploration strategy are tailored to a case study represented by five prospects in a salt basin, but they will also be useful for other contexts. For the particular case study, we show how the strategy clearly depends on the exploration and development cost and the expected volumes and recovery factors. The most lucrative prospect tends to be selected first, but the sequential decisions depend on the outcome of the exploration well in this first prospect.


Sign in / Sign up

Export Citation Format

Share Document