scholarly journals Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate

2011 ◽  
Vol 11 (5) ◽  
pp. 1929-1948 ◽  
Author(s):  
Y. Qian ◽  
M. G. Flanner ◽  
L. R. Leung ◽  
W. Wang

Abstract. The Tibetan Plateau (TP) has long been identified to be critical in regulating the Asian monsoon climate and hydrological cycle. In this modeling study a series of numerical experiments with a global climate model are designed to simulate radiative effect of black carbon (BC) and dust in snow, and to assess the relative impacts of anthropogenic CO2 and carbonaceous particles in the atmosphere and snow on the snowpack over the TP and subsequent impacts on the Asian monsoon climate and hydrological cycle. Simulations results show a large BC content in snow over the TP, especially the southern slope. Because of the high aerosol content in snow and large incident solar radiation in the low latitude and high elevation, the TP exhibits the largest surface radiative flux changes induced by aerosols (e.g. BC, Dust) in snow compared to any other snow-covered regions in the world. Simulation results show that the aerosol-induced snow albedo perturbations generate surface radiative flux changes of 5–25 W m−2 during spring, with a maximum in April or May. BC-in-snow increases the surface air temperature by around 1.0 °C averaged over the TP and reduces spring snowpack over the TP more than pre-industrial to present CO2 increase and carbonaceous particles in the atmosphere. As a result, runoff increases during late winter and early spring but decreases during late spring and early summer (i.e. a trend toward earlier melt dates). The snowmelt efficacy, defined as the snowpack reduction per unit degree of warming induced by the forcing agent, is 1–4 times larger for BC-in-snow than CO2 increase during April–July, indicating that BC-in-snow more efficiently accelerates snowmelt because the increased net solar radiation induced by reduced albedo melts the snow more efficiently than snow melt due to warming in the air. The TP also influences the South (SAM) and East (EAM) Asian monsoon through its dynamical and thermal forcing. Simulation results show that during boreal spring aerosols are transported by southwesterly, causing some particles to reach higher altitude and deposit to the snowpack over the TP. While BC and Organic Matter (OM) in the atmosphere directly absorb sunlight and warm the air, the darkened snow surface polluted by BC absorbs more solar radiation and increases the skin temperature, which warms the air above through sensible heat flux. Both effects enhance the upward motion of air and spur deep convection along the TP during the pre-monsoon season, resulting in earlier onset of the SAM and increase of moisture, cloudiness and convective precipitation over northern India. BC-in-snow has a more significant impact on the EAM in July than CO2 increase and carbonaceous particles in the atmosphere. Contributed by the significant increase of both sensible heat flux associated with the warm skin temperature and latent heat flux associated with increased soil moisture with long memory, the role of the TP as a heat pump is elevated from spring through summer as the land-sea thermal contrast increases to strengthen the EAM. As a result, both southern China and northern China become wetter, but central China (i.e. Yangtze River Basin) becomes drier – a near-zonal anomaly pattern that is consistent with the dominant mode of precipitation variability in East Asia. The snow impurity effects reported in this study likely represent some upper limits as snowpack is remarkably overestimated over the TP due to excessive precipitation. Improving the simulation of precipitation and snowpack will be important for improved estimates of the effects of snowpack pollution in future work.

2010 ◽  
Vol 10 (10) ◽  
pp. 22855-22903 ◽  
Author(s):  
Y. Qian ◽  
M. G. Flanner ◽  
L. R. Leung ◽  
W. Wang

Abstract. The Tibetan Plateau (TP), the highest and largest plateau in the world, has long been identified to be critical in regulating the Asian monsoon climate and hydrological cycle. The snowpack and glaciers over the TP provide fresh water to billions of people in Asian countries, but the TP glaciers have been retreating faster than those anywhere else in the world. In this modeling study a series of numerical experiments with a global climate model are designed to simulate radiative forcing of black carbon (BC) and dust in snow, and to assess the relative impacts of anthropogenic CO2 and carbonaceous particles in the atmosphere and snow on the snowpack over the TP and subsequent impacts on the Asian monsoon climate and hydrological cycle. Simulations results show a large BC content in snow over the TP, especially the southern slope, with concentration larger than 100 μg/kg. Because of the high aerosol content in snow and large incident solar radiation in the low latitude and high elevation, the TP exhibits the largest surface radiative forcing induced by aerosols (e.g. BC, Dust) in snow compared to other snow-covered regions in the world. Simulation results show that the aerosol-induced snow albedo perturbations generate surface radiative forcing of 5–25 W m−2 during spring, with a maximum in April or May. BC-in-snow increases the surface air temperature by around 1.0 °C averaged over the TP and reduces spring snowpack over the TP more than pre-industrial to present CO2 increase and carbonaceous particles in the atmosphere. As a result, runoff increases during late winter and early spring but decreases during late spring and early summer (i.e. a trend toward earlier melt dates). The snowmelt efficacy, defined as the snowpack reduction per unit degree of warming induced by the forcing agent, is 1–4 times larger for BC-in-snow than CO2 increase during April–July, indicating that BC-in-snow more efficiently accelerates snowmelt because the increased net solar radiation induced by reduced albedo melts the snow more efficiently than snow melt due to warming in the air. The TP also influences the South (SAM) and East (EAM) Asian monsoon through its dynamical and thermal forcing. Simulation results show that during boreal spring aerosols are transported by southwesterly, causing some particles to reach higher altitude and deposit to the snowpack over the TP. While BC and OM in the atmosphere directly absorb sunlight and warm the air, the darkened snow surface polluted by BC absorbs more solar radiation and increases the skin temperature, which warms the air above through sensible heat flux. Both effects enhance the upward motion of air and spur deep convection along the TP during the pre-monsoon season, resulting in earlier onset of the SAM and increase of moisture, cloudiness and convective precipitation over Northern India. BC-in-snow has a more significant impact on the EAM in July than CO2 increase and carbonaceous particles in the atmosphere. Contributed by the significant increase of both sensible heat flux associated with the warm skin temperature and latent heat flux associated with increased soil moisture with long memory, the role of the TP as a heat pump is elevated from spring through summer as the land-sea thermal contrast increases to strengthen the EAM. As a result, both Southern China and Northern China become wetter, but Central China (i.e. Yangtze River Basin) becomes drier – a near-zonal anomaly pattern that is consistent with the dominant mode of precipitation variability in East Asia.


2020 ◽  
Author(s):  
Junhui Che ◽  
Ping Zhao

Abstract. Based on intensive sounding, surface sensible heat flux, solar radiation, and soil moisture observational datasets from the Third Tibetan Plateau Atmospheric Scientific Experiment and the routine meteorological operational sounding and total cloudiness datasets in the Tibetan Plateau (TP) for the period 2013–2015, we investigate the features of summer atmospheric boundary layer (ABL) over the TP and its major influential factors. It is found that the convective boundary layer (CBL) and the neutral boundary layer (NBL) show remarkable diurnal variations over the TP, while the stable boundary layer (SBL) diurnal variation is weak. In the early morning, the ABL height distribution is narrow, with a small west-east difference. The SBL accounts for 85 % of the TP ABL. At noon, there is a wide distribution in the ABL height up to 4000 m. The CBL accounts for 77 % of the TP ABL, with more than 50 % of the CBL height above 1900 m. The ABL height exhibits a large west-east difference, with a mean height above 2000 m in the western TP and around 1500 m in the eastern TP. In the late afternoon, the CBL and SBL dominate the western and eastern TP, respectively, resulting in a larger west-east difference of 1054.2 m between the western and eastern TP. The high ABL height in a cold environment over the western TP (relative to the plain areas) is similar to that in some extreme hot and arid areas such as Dunhuang and Taklimakan Deserts. For the western (eastern) TP, there is low (high) total cloud coverage, with large (small) solar radiation at the surface and dry (wet) soil. These features result in high (low) sensible heat flux and thus promotes (inhibits) the local ABL development.


2011 ◽  
Vol 24 (24) ◽  
pp. 6540-6550 ◽  
Author(s):  
Lei Zhong ◽  
Zhongbo Su ◽  
Yaoming Ma ◽  
Mhd. Suhyb Salama ◽  
José A. Sobrino

Abstract Variations of land surface parameters over the Tibetan Plateau have great importance on local energy and water cycles, the Asian monsoon, and climate change studies. In this paper, the NOAA/NASA Pathfinder Advanced Very High Resolution Radiometer (AVHRR) Land (PAL) dataset is used to retrieve the land surface temperature (LST), the normalized difference vegetation index (NDVI), and albedo, from 1982 to 2000. Simultaneously, meteorological parameters and land surface heat fluxes are acquired from the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) dataset and the Global Land Data Assimilation System (GLDAS), respectively. Results show that from 1982 to 2000 both the LST and the surface air temperature increased on the Tibetan Plateau (TP). The rate of increase of the LST was 0.26±0.16 K decade−1 and that of the surface air temperature was 0.29 ± 0.16 K decade−1, which exceeded the increase in the Northern Hemisphere (0.054 K decade−1). The plateau-wide annual mean precipitation increased at 2.54 mm decade−1, which indicates that the TP is becoming wetter. The 10-m wind speed decreased at about 0.05±0.03 m s−1 decade−1 from 1982 to 2000, which manifests a steady decline of the Asian monsoon wind. Due to the diminishing ground–air temperature gradient and subdued surface wind speed, the sensible heat flux showed a decline of 3.37 ± 2.19 W m−2 decade−1. The seasonal cycle of land surface parameters could clearly be linked to the patterns of the Asian monsoon. The spatial patterns of sensible heat flux, latent heat flux, and their variance could also be recognized.


2021 ◽  
Vol 21 (7) ◽  
pp. 5253-5268
Author(s):  
Junhui Che ◽  
Ping Zhao

Abstract. The important roles of the Tibetan Plateau (TP) atmospheric boundary layer (ABL) in climate, weather, and air quality have long been recognized, but little is known about the TP ABL climatological features and their west–east discrepancies due to the scarce data in the western TP. Based on observational datasets of intensive sounding, surface sensible heat flux, solar radiation, and soil moisture from the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III) and the routine meteorological-operational-sounding and ground-based cloud cover datasets in the Tibetan Plateau for the period 2013–2015, we investigate the west–east differences in summer ABL features over the TP and the associated influential factors for the first time. It is found that the heights of both the convective boundary layer (CBL) and the neutral boundary layer (NBL) exhibit a diurnal variation and a west–east difference in the TP, while these features are not remarkable for the stable boundary layer (SBL). Moreover, the ABL shows significant discrepancies in the amplitude of the diurnal variation and the persistent time of the development between the eastern and western TP. In the early morning (08:00 BJT, Beijing time), the ABL height distribution is narrow, with a mean height below 450 m a.g.l. (above ground level) and a small west–east difference. The SBL observed at this moment accounts for 85 % of the total TP ABL. There is a wide distribution in the ABL height up to 4000 m a.g.l. and a large west–east difference for the total ABL height at noon (14:00 BJT), with a mean height above 2000 m a.g.l. in the western TP and around 1500 m a.g.l. in the eastern TP. The CBL accounts for 77 % of the total TP ABL at this moment, with more than 50 % of the CBL above 1900 m a.g.l. In the late afternoon (20:00 BJT), the CBL and SBL dominate the western and eastern TP, respectively, which results in a larger west–east difference of 1054.2 m between the western and eastern TP. The high ABL height in a cold environment over the western TP (relative to the plain areas) is similar to that in some extreme hot and arid areas such as Dunhuang and Taklimakan deserts. In general, for the western (eastern) TP, there is low (high) total cloud coverage, with large (small) solar radiation at the surface and dry (wet) soil. These features lead to high (low) sensible heat flux and thus promote (inhibit) the local ABL development. This study provides new insights for west–east structures of the summer ABL height, occurrence frequency, and diurnal amplitude over the TP region and the associated reasons.


2009 ◽  
Vol 48 (12) ◽  
pp. 2474-2486 ◽  
Author(s):  
Kun Yang ◽  
Jun Qin ◽  
Xiaofeng Guo ◽  
Degang Zhou ◽  
Yaoming Ma

Abstract To clarify the thermal forcing of the Tibetan Plateau, long-term coarse-temporal-resolution data from the China Meteorological Administration have been widely used to estimate surface sensible heat flux by bulk methods in many previous studies; however, these estimates have seldom been evaluated against observations. This study at first evaluates three widely used bulk schemes against Tibet instrumental flux data. The evaluation shows that large uncertainties exist in the heat flux estimated by these schemes; in particular, upward heat fluxes in winter may be significantly underestimated, because diurnal variations of atmospheric stability were not taken into account. To improve the estimate, a new method is developed to disaggregate coarse-resolution meteorological data to hourly according to statistical relationships derived from high-resolution experimental data, and then sensible heat flux is estimated from the hourly data by a well-validated flux scheme. Evaluations against heat flux observations in summer and against net radiation observations in winter indicate that the new method performs much better than previous schemes, and therefore it provides a robust basis for quantifying the Tibetan surface energy budget.


2018 ◽  
Vol 52 (7-8) ◽  
pp. 3997-4009 ◽  
Author(s):  
Lihua Zhu ◽  
Gang Huang ◽  
Guangzhou Fan ◽  
Xia Qü ◽  
Zhibiao Wang ◽  
...  

2010 ◽  
Vol 4 (Special Issue 2) ◽  
pp. S49-S58 ◽  
Author(s):  
J. Brom ◽  
J. Procházka ◽  
A. Rejšková

The dissipation of solar energy and consequently the formation of the hydrological cycle are largely dependent on the structural and optical characteristics of the land surface. In our study, we selected seven units with different types of vegetation in the Mlýnský and Horský catchments (South-Eastern part of the Šumava Mountains, Czech Republic) for the assessment of the differences in their functioning expressed through the surface temperature, humidity, and energy dissipation. For our analyses, we used Landsat 5 TM satellite data from June 25<SUP>th</SUP>, 2008. The results showed that the microclimatic characteristics and energy fluxes varied in different units according to their vegetation characteristics. A cluster analysis of the mean values was used to divide the vegetation units into groups according to their functional characteristics. The mown meadows were characterised by the highest surface temperature and sensible heat flux and the lowest humidity and latent heat flux. On the contrary, the lowest surface temperature and sensible heat flux and the highest humidity and latent heat flux were found in the forest. Our results showed that the climatic and energetic features of the land surface are related to the type of vegetation. We state that the spatial distribution of different vegetation units and the amount of biomass are crucial variables influencing the functioning of the landscape.


2012 ◽  
Vol 25 (2) ◽  
pp. 767-776 ◽  
Author(s):  
Huang Qian ◽  
Yao Suxiang ◽  
Zhang Yaocun

Abstract A regional air–sea coupled climate model based on the third regional climate model (RegCM3) and the regional oceanic model [the Princeton Ocean Model (POM)] is used to analyze the local air–sea interaction over East Asia in this study. The results indicate that the simulated sea surface temperature (SST) of the coupled model RegCM3–POM is reasonably accurate, and that the spatial pattern and temporal variation are consistent with that of the Global Sea Ice and Sea Surface Temperature dataset (GISST). The correlation between the SST and the atmospheric variables shows that the uncoupled model RegCM3 forced by the given SST cannot reproduce the real-time and SST lag correlation between SST and precipitation, and between SST and surface wind speed, whereas the relationship in the coupled model RegCM3–POM is reasonably accurate. RegCM3–POM reflects the air–sea interaction in the South China Sea and western Pacific Ocean, where the SST lead correlation is the inverse of the SST lag correlation between SST and precipitation, and strong winds bring warm water to the midlatitudes, so the correlation between wind speed and SST is negative in low latitudes and positive in the Kuroshio area. The uncoupled model fails to reproduce the effect of the atmosphere on the ocean. The further study on air–sea interaction in the South China Sea indicates that the earlier warm seawater corresponds to strong sensible heat flux, evaporation, precipitation, and weak net solar radiation, and the early strong sensible heat flux, evaporation, wind at the 10-m level, and weak net solar radiation cause the cold SST.


2018 ◽  
Vol 22 (1) ◽  
pp. 819-830 ◽  
Author(s):  
Bart Schilperoort ◽  
Miriam Coenders-Gerrits ◽  
Willem Luxemburg ◽  
César Jiménez Rodríguez ◽  
César Cisneros Vaca ◽  
...  

Abstract. Rapid improvements in the precision and spatial resolution of distributed temperature sensing (DTS) technology now allow its use in hydrological and atmospheric sciences. Introduced by ) is the use of DTS for measuring the Bowen ratio (BR-DTS), to estimate the sensible and latent heat flux. The Bowen ratio is derived from DTS-measured vertical profiles of the air temperature and wet-bulb temperature. However, in previous research the measured temperatures were not validated, and the cables were not shielded from solar radiation. Additionally, the BR-DTS method has not been tested above a forest before, where temperature gradients are small and energy storage in the air column becomes important. In this paper the accuracy of the wet-bulb and air temperature measurements of the DTS are verified, and the resulting Bowen ratio and heat fluxes are compared to eddy covariance data. The performance of BR-DTS was tested on a 46 m high tower in a mixed forest in the centre of the Netherlands in August 2016. The average tree height is 26 to 30 m, and the temperatures are measured below, in, and above the canopy. Using the vertical temperature profiles the storage of latent and sensible heat in the air column was calculated. We found a significant effect of solar radiation on the temperature measurements, leading to a deviation of up to 3 K. By installing screens, the error caused by sunlight is reduced to under 1 K. Wind speed seems to have a minimal effect on the measured wet-bulb temperature, both below and above the canopy. After a simple quality control, the Bowen ratio measured by DTS correlates well with eddy covariance (EC) estimates (r2 = 0.59). The average energy balance closure between BR-DTS and EC is good, with a mean underestimation of 3.4 W m−2 by the BR-DTS method. However, during daytime the BR-DTS method overestimates the available energy, and during night-time the BR-DTS method estimates the available energy to be more negative. This difference could be related to the biomass heat storage, which is neglected in this study. The BR-DTS method overestimates the latent heat flux on average by 18.7 W m−2, with RMSE = 90 W m−2. The sensible heat flux is underestimated on average by 10.6 W m−2, with RMSE = 76 W m−2. Estimates of the BR-DTS can be improved once the uncertainties in the energy balance are reduced. However, applying, for example, Monin–Obukhov similarity theory could provide independent estimates for the sensible heat flux. This would make the determination of the highly uncertain and difficult to determine net available energy redundant.


Sign in / Sign up

Export Citation Format

Share Document