scholarly journals Observations of ice multiplication in a weakly convective cell embedded in supercooled mid-level stratus

2011 ◽  
Vol 11 (1) ◽  
pp. 257-273 ◽  
Author(s):  
J. Crosier ◽  
K. N. Bower ◽  
T. W. Choularton ◽  
C. D. Westbrook ◽  
P. J. Connolly ◽  
...  

Abstract. Simultaneous observations of cloud microphysical properties were obtained by in-situ aircraft measurements and ground based Radar/Lidar. Widespread mid-level stratus cloud was present below a temperature inversion (~5 °C magnitude) at 3.6 km altitude. Localised convection (peak updraft 1.5 m s−1) was observed 20 km west of the Radar station. This was associated with convergence at 2.5 km altitude. The convection was unable to penetrate the inversion capping the mid-level stratus. The mid-level stratus cloud was vertically thin (~400 m), horizontally extensive (covering 100 s of km) and persisted for more than 24 h. The cloud consisted of supercooled water droplets and small concentrations of large (~1 mm) stellar/plate like ice which slowly precipitated out. This ice was nucleated at temperatures greater than −12.2 °C and less than −10.0 °C, (cloud top and cloud base temperatures, respectively). No ice seeding from above the cloud layer was observed. This ice was formed by primary nucleation, either through the entrainment of efficient ice nuclei from above/below cloud, or by the slow stochastic activation of immersion freezing ice nuclei contained within the supercooled drops. Above cloud top significant concentrations of sub-micron aerosol were observed and consisted of a mixture of sulphate and carbonaceous material, a potential source of ice nuclei. Particle number concentrations (in the size range 0.1

2010 ◽  
Vol 10 (8) ◽  
pp. 19381-19427
Author(s):  
J. Crosier ◽  
K. N. Bower ◽  
T. W. Choularton ◽  
C. D. Westbrook ◽  
P. J. Connolly ◽  
...  

Abstract. Simultaneous observations of cloud microphysical properties were obtained by in-situ aircraft measurements and ground based Radar/Lidar. Widespread mid-level stratus cloud was present below a temperature inversion (~5 °C magnitude) at 3.6 km altitude. Localised convection (peak updraft 1.5 m s−1) was observed 20 km west of the Radar station. This was associated with convergence at 2.5 km altitude. The convection was unable to penetrate the inversion capping the mid-level stratus. The mid-level stratus cloud was vertically thin (~400 m), horizontally extensive (covering 100 s of km) and persisted for more than 24 h. The cloud consisted of supercooled water droplets and small concentrations of large (~1 mm) stellar/plate like ice which slowly precipitated out. This ice was nucleated at temperatures greater than −12.2 °C and less than −10.0 °C, (cloud top and cloud base temperatures, respectively). No ice seeding from above the cloud layer was observed. This ice was formed by primary nucleation, either through the entrainment of efficient ice nuclei from above/below cloud, or by the slow stochastic activation of immersion freezing ice nuclei contained within the supercooled drops. Above cloud top significant concentrations of sub-micron aerosol were observed and consisted of a mixture of sulphate and carbonaceous material, a potential source of ice nuclei. Precipitation from the mid-level stratus evaporated before reaching the surface, whereas rates of up to 1 mm h−1 were observed below the convective feature. There is strong evidence for the Hallett-Mossop (HM) process of secondary ice particle production leading to the formation of the precipitation observed. This includes (1) Ice concentrations in the convective feature were more than an order of magnitude greater than the concentration of primary ice in the overlaying stratus, (2) Large concentrations of small pristine columns were observed at the ~−5 °C level together with liquid water droplets and a few rimed ice particles, (3) Columns were larger and increasingly rimed at colder temperatures. Calculated ice splinter production rates are consistent with observed concentrations if the condition that only droplets greater than 24 μm are capable of generating secondary ice splinters is relaxed. This case demonstrates the importance of understanding the formation of ice at slightly supercooled temperatures, as it can lead to secondary ice production and the formation of precipitation in clouds which may not otherwise be considered as significant precipitation sources.


2019 ◽  
Author(s):  
Pascal Polonik ◽  
Christoph Knote ◽  
Tobias Zinner ◽  
Florian Ewald ◽  
Tobias Kölling ◽  
...  

Abstract. The realistic representation of cloud-aerosol interactions is of primary importance for accurate climate model projections. The investigation of these interactions in strongly contrasting clean and polluted atmospheric conditions in the Amazon area has been one of the motivations for several field observations, including the airborne Aerosol, Cloud, Precipitation, and Radiation Interactions and DynamIcs of CONvective cloud systems – Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitation Measurement) (ACRIDICON-CHUVA) campaign based in Manaus, Brazil in September 2014. In this work we combine in situ and remotely sensed aerosol, cloud, and atmospheric radiation data collected during ACRIDICON-CHUVA with regional, online-coupled chemistry-transport simulations to evaluate the model’s ability to represent the indirect effects of biomass burning aerosol on cloud microphysical properties (droplet number concentration and effective radius). We found agreement between modeled and observed median cloud droplet number concentrations (CDNC) for low values of CDNC, i.e., low levels of pollution. In general, a linear relationship between modeled and observed CDNC with a slope of two was found, which means a systematic underestimation of modeled CDNC as compared to measurements. Variability in cloud condensation nuclei (CCN) number concentrations and cloud droplet effective radii (reff) was also underestimated by the model. Modeled effective radius profiles began to saturate around 500 CCN per cm3 at cloud base, indicating an upper limit for the model sensitivity well below CCN concentrations reached during the burning season in the Amazon Basin. Regional background aerosol concentrations were sufficiently high such that the additional CCN emitted from local fires did not cause a notable change in modelled cloud microphysical properties. In addition, we evaluate a parameterization of CDNC at cloud base using more readily available cloud microphysical properties, aimed at in situ observations and satellite retrievals. Our study casts doubt on the validity of regional scale modeling studies of the cloud albedo effect in convective situations for polluted situations where the number concentration of CCN is greater than 500 cm−3.


2016 ◽  
Vol 73 (6) ◽  
pp. 2445-2464 ◽  
Author(s):  
Eric J. Jensen ◽  
Rei Ueyama ◽  
Leonhard Pfister ◽  
Thaopaul V. Bui ◽  
R. Paul Lawson ◽  
...  

Abstract Numerical simulations of cirrus formation in the tropical tropopause layer (TTL) during boreal wintertime are used to evaluate the impact of heterogeneous ice nuclei (IN) abundance on cold cloud microphysical properties and occurrence frequencies. The cirrus model includes homogeneous and heterogeneous ice nucleation, deposition growth/sublimation, and sedimentation. Reanalysis temperature and wind fields with high-frequency waves superimposed are used to force the simulations. The model results are constrained by comparison with in situ and satellite observations of TTL cirrus and relative humidity. Temperature variability driven by high-frequency waves has a dominant influence on TTL cirrus microphysical properties and occurrence frequencies, and inclusion of these waves is required to produce agreement between the simulated and observed abundance of TTL cirrus. With homogeneous freezing only and small-scale gravity waves included in the temperature curtains, the model produces excessive ice concentrations compared with in situ observations. Inclusion of relatively numerous heterogeneous ice nuclei (NIN ≥ 100 L−1) in the simulations improves the agreement with observed ice concentrations. However, when IN contribute significantly to TTL cirrus ice nucleation, the occurrence frequency of large supersaturations with respect to ice is less than indicated by in situ measurements. The model results suggest that the sensitivity of TTL cirrus extinction and ice water content statistics to heterogeneous ice nuclei abundance is relatively weak. The simulated occurrence frequencies of TTL cirrus are quite insensitive to ice nuclei abundance, both in terms of cloud frequency height distribution and regional distribution throughout the tropics.


Atmosphere ◽  
2018 ◽  
Vol 9 (5) ◽  
pp. 169 ◽  
Author(s):  
Jean-Charles Dupont ◽  
Martial Haeffelin ◽  
Eivind Wærsted ◽  
Julien Delanoe ◽  
Jean-Baptiste Renard ◽  
...  

2009 ◽  
Vol 9 (5) ◽  
pp. 20631-20675 ◽  
Author(s):  
E. J. Jensen ◽  
L. Pfister ◽  
T.-P. Bui ◽  
P. Lawson ◽  
D. Baumgardner

Abstract. In past modeling studies, it has generally been assumed that the predominant mechanism for nucleation of ice in the uppermost troposphere is homogeneous freezing of aqueous aerosols. However, recent in situ and remote-sensing measurements of the properties of cirrus clouds at very low temperatures in the tropical tropopause layer (TTL) are broadly inconsistent with theoretial predictions based on the homogeneous freezing assumption. The nearly ubiquitous occurence of gravity waves in the TTL makes the predictions from homogeneous nucleation theory particularly difficult to reconcile with measurements. These measured properties include ice number concentrations, which are much lower than theory predicts; ice crystal size distributions, which are much broader than theory predicts; and cloud extinctions, which are much lower than theory predicts. Although other explanations are possible, one way to limit ice concentrations is to have on the order of 50 L−1 effective ice nuclei (IN) that could nucleate ice at relatively low supersaturations. We suggest that ammonium sulfate particles, which would be dry much of the time in the cold TTL, are a potential IN candidate for TTL cirrus. Possible implications of the observed cloud microphysical properties for ice sedimentation, dehydration, and cloud persistence are also discussed.


2010 ◽  
Vol 10 (3) ◽  
pp. 1369-1384 ◽  
Author(s):  
E. J. Jensen ◽  
L. Pfister ◽  
T.-P. Bui ◽  
P. Lawson ◽  
D. Baumgardner

Abstract. In past modeling studies, it has generally been assumed that the predominant mechanism for nucleation of ice in the uppermost troposphere is homogeneous freezing of aqueous aerosols. However, recent in situ and remote-sensing measurements of the properties of cirrus clouds at very low temperatures in the tropical tropopause layer (TTL) are broadly inconsistent with theoretial predictions based on the homogeneous freezing assumption. The nearly ubiquitous occurence of gravity waves in the TTL makes the predictions from homogeneous nucleation theory particularly difficult to reconcile with measurements. These measured properties include ice number concentrations, which are much lower than theory predicts; ice crystal size distributions, which are much broader than theory predicts; and cloud extinctions, which are much lower than theory predicts. Although other explanations are possible, one way to limit ice concentrations is to have on the order of 50 L−1 effective ice nuclei (IN) that could nucleate ice at relatively low supersaturations. We suggest that ammonium sulfate particles, which would be dry much of the time in the cold TTL, are a potential IN candidate for TTL cirrus. However, this mechanism remains to be fully quantified for the size distribution of ammonium sulfate (possibly internally mixed with organics) actually present in the upper troposphere. Possible implications of the observed cloud microphysical properties for ice sedimentation, dehydration, and cloud persistence are also discussed.


2021 ◽  
Vol 250 ◽  
pp. 118254
Author(s):  
Andy Vicente-Luis ◽  
Samantha Tremblay ◽  
Joelle Dionne ◽  
Rachel Y.-W. Chang ◽  
Pierre F. Fogal ◽  
...  

2013 ◽  
Vol 71 (1) ◽  
pp. 89-97 ◽  
Author(s):  
Gianni Santachiara ◽  
Franco Belosi ◽  
Franco Prodi

Abstract This paper addresses the problem of the large discrepancies between ice crystal concentrations in clouds and the number of ice nuclei in nearby clear air reported in published papers. Such discrepancies cannot always be explained, even by taking into account both primary and secondary ice formation processes. A laboratory experiment was performed in a cylindrical column placed in a cold room at atmospheric pressure and temperature in the −12° to −14°C range. Supercooled droplets were nucleated in the column, in the absence of aerosol ice nuclei, by injecting ice crystals generated outside in a small syringe. A rapid increase in the ice crystal concentration was observed in the absence of any known ice multiplication. The ratio between the mean number of ice crystals in the column, after complete droplet vaporization, and the number of ice crystals introduced in the column was about 10:1. The presence of small ice crystals (introduced at the top of the column) in the unstable system (supercooled droplets) appears to trigger the transformation in the whole supercooled liquid cloud. A possible explanation could be that the rapidly evaporating droplets cool sufficiently to determine a homogeneous nucleation.


2016 ◽  
Author(s):  
Claudia Marcolli ◽  
Baban Nagare ◽  
André Welti ◽  
Ulrike Lohmann

Abstract. AgI is one of the best investigated ice nuclei. It has relevance for the atmosphere since it is used for glaciogenic cloud seeding. Theoretical and experimental studies over the last sixty years provide a complex picture of silver iodide as ice nucleating agent with conflicting and inconsistent results. This review compares experimental ice nucleation studies in order to analyse the factors that influence the ice nucleation ability of AgI. We have performed experiments to compare contact and immersion freezing by AgI. This is one of three papers that describe and analyse contact and immersion freezing experiments with AgI. In Nagare et al. (Nagare, B., Marcolli, C., Stetzer, O., and Lohmann, U.: Comparison of measured and calculated collision efficiencies at low temperatures, Atmos. Chem. Phys., 15, 13759–13776, doi:10.5194/acp-15-13759-2015, 2015) collision efficiencies based on contact freezing experiments with AgI are determined and compared with theoretical formulations. In a companion paper, contact freezing experiments are compared with immersion freezing experiments conducted with AgI, kaolinite, and ATD as ice nuclei. The following picture emerges from this analysis: The ice nucleation ability of AgI seems to be enhanced when the AgI particle is on the surface of a droplet, which is indeed the position that a particle takes when it can freely move in a droplet. Ice nucleation by particles with surfaces exposed to air, depends on water adsorption. AgI surfaces seem to be most efficient as ice nuclei when they are exposed to relative humidity at or even above water saturation. For AgI particles that are totally immersed in water, the freezing temperature increases with increasing AgI surface area. Higher threshold freezing temperature seem to correlate with improved lattice matches as can be seen for AgI-AgCl solid solutions and 3AgI•NH4I•6H2O, which have slightly better lattice matches with ice than AgI and also higher threshold freezing temperatures. However, the effect of a good lattice match is annihilated when the surfaces have charges. Also, the ice nucleation ability seems to decrease during dissolution of AgI particles. This introduces an additional history and time dependence of ice nucleation in cloud chambers with short residence times.


2014 ◽  
Vol 7 (9) ◽  
pp. 3095-3112 ◽  
Author(s):  
P. Sawamura ◽  
D. Müller ◽  
R. M. Hoff ◽  
C. A. Hostetler ◽  
R. A. Ferrare ◽  
...  

Abstract. Retrievals of aerosol microphysical properties (effective radius, volume and surface-area concentrations) and aerosol optical properties (complex index of refraction and single-scattering albedo) were obtained from a hybrid multiwavelength lidar data set for the first time. In July 2011, in the Baltimore–Washington DC region, synergistic profiling of optical and microphysical properties of aerosols with both airborne (in situ and remote sensing) and ground-based remote sensing systems was performed during the first deployment of DISCOVER-AQ. The hybrid multiwavelength lidar data set combines ground-based elastic backscatter lidar measurements at 355 nm with airborne High-Spectral-Resolution Lidar (HSRL) measurements at 532 nm and elastic backscatter lidar measurements at 1064 nm that were obtained less than 5 km apart from each other. This was the first study in which optical and microphysical retrievals from lidar were obtained during the day and directly compared to AERONET and in situ measurements for 11 cases. Good agreement was observed between lidar and AERONET retrievals. Larger discrepancies were observed between lidar retrievals and in situ measurements obtained by the aircraft and aerosol hygroscopic effects are believed to be the main factor in such discrepancies.


Sign in / Sign up

Export Citation Format

Share Document