scholarly journals The response of precipitation to aerosol through riming and melting in deep convective clouds

2011 ◽  
Vol 11 (7) ◽  
pp. 3495-3510 ◽  
Author(s):  
Z. Cui ◽  
S. Davies ◽  
K. S. Carslaw ◽  
A. M. Blyth

Abstract. We have used a 2-D axisymmetric, non-hydrostatic, bin-resolved cloud model to examine the impact of aerosol changes on the development of mixed-phase convective clouds. We have simulated convective clouds from four different sites (three continental and one tropical marine) with a wide range of realistic aerosol loadings and initial thermodynamic conditions (a total of 93 different clouds). It is found that the accumulated precipitation responds very differently to changing aerosol in the marine and continental environments. For the continental clouds, the scaled total precipitation reaches a maximum for aerosol that produce drop numbers at cloud base between 180–430 cm−3 when other conditions are the same. In contrast, all the tropical marine clouds show an increase in accumulated precipitation and deeper convection with increasing aerosol loading. For continental clouds, drops are rapidly depleted by ice particles shortly after the onset of precipitation. The precipitation is dominantly produced by melting ice particles. The riming rate increases with aerosol when the loading is very low, and decreases when the loading is high. Peak precipitation intensities tend to increase with aerosol up to drop concentrations (at cloud base) of ~500 cm−3 then decrease with further aerosol increases. This behaviour is caused by the initial transition from warm to mixed-phase rain followed by reduced efficiency of mixed-phase rain at very high drop concentrations. The response of tropical marine clouds to increasing aerosol is different to, and larger than, that of continental clouds. In the more humid tropical marine environment with low cloud bases we find that accumulated precipitation increases with increasing aerosol. The increase is driven by the transition from warm to mixed-phase rain. Our study suggests that the response of deep convective clouds to aerosol will be an important contribution to the spatial and temporal variability in cloud microphysics and precipitation.

2010 ◽  
Vol 10 (11) ◽  
pp. 29007-29050
Author(s):  
Z. Cui ◽  
S. Davies ◽  
K. S. Carslaw ◽  
A. M. Blyth

Abstract. We have used a 2-D axisymmetric, non-hydrostatic, bin-resolved cloud model to examine the impact of aerosol changes on the development of mixed-phase convective clouds. We have simulated convective clouds from four different sites (three continental and one tropical marine) with a wide range of realistic aerosol loadings and initial thermodynamic conditions (a total of 93 different clouds). It is found that the accumulated precipitation responds very differently to changing aerosol in the marine and continental environments. For the continental clouds, the scaled total precipitation reaches a maximum for aerosol that produce drop numbers at cloud base between 180–430 cm−3 when other conditions are the same. In contrast, all the tropical marine clouds show an increase in accumulated precipitation and deeper convection with increasing aerosol loading. For continental clouds, drops are rapidly depleted by ice particles shortly after the onset of precipitation. The precipitation is dominantly produced by melting ice particles. The riming rate increases with aerosol when the loading is very low, and decreases when the loading is high. Peak precipitation intensities tend to increase with aerosol up to drop concentrations (at cloud base) of ~500 cm−3 then decrease with further aerosol increases. This behaviour is caused by the initial transition from warm to mixed-phase rain followed by reduced efficiency of mixed-phase rain at very high drop concentrations. The response of tropical marine clouds to increasing aerosol is different to, and larger than, that of continental clouds. In the more humid tropical marine environment with low cloud bases we find that accumulated precipitation increases with increasing aerosol. The increase is driven by the transition from warm to mixed-phase rain. Our study suggests that the response of deep convective clouds to aerosol will be an important contribution to the spatial and temporal variability in cloud microphysics and precipitation.


2020 ◽  
Vol 20 (4) ◽  
pp. 2201-2219
Author(s):  
Constanze Wellmann ◽  
Andrew I. Barrett ◽  
Jill S. Johnson ◽  
Michael Kunz ◽  
Bernhard Vogel ◽  
...  

Abstract. Severe hailstorms have the potential to damage buildings and crops. However, important processes for the prediction of hailstorms are insufficiently represented in operational weather forecast models. Therefore, our goal is to identify model input parameters describing environmental conditions and cloud microphysics, such as the vertical wind shear and strength of ice multiplication, which lead to large uncertainties in the prediction of deep convective clouds and precipitation. We conduct a comprehensive sensitivity analysis simulating deep convective clouds in an idealized setup of a cloud-resolving model. We use statistical emulation and variance-based sensitivity analysis to enable a Monte Carlo sampling of the model outputs across the multi-dimensional parameter space. The results show that the model dynamical and microphysical properties are sensitive to both the environmental and microphysical uncertainties in the model. The microphysical parameters lead to larger uncertainties in the output of integrated hydrometeor mass contents and precipitation variables. In particular, the uncertainty in the fall velocities of graupel and hail account for more than 65 % of the variance of all considered precipitation variables and for 30 %–90 % of the variance of the integrated hydrometeor mass contents. In contrast, variations in the environmental parameters – the range of which is limited to represent model uncertainty – mainly affect the vertical profiles of the diabatic heating rates.


2019 ◽  
Vol 19 (4) ◽  
pp. 2601-2627 ◽  
Author(s):  
Max Heikenfeld ◽  
Bethan White ◽  
Laurent Labbouz ◽  
Philip Stier

Abstract. The impact of aerosols on ice- and mixed-phase processes in deep convective clouds remains highly uncertain, and the wide range of interacting microphysical processes is still poorly understood. To understand these processes, we analyse diagnostic output of all individual microphysical process rates for two bulk microphysics schemes in the Weather and Research Forecasting model (WRF). We investigate the response of individual processes to changes in aerosol conditions and the propagation of perturbations through the microphysics all the way to the macrophysical development of the convective clouds. We perform simulations for two different cases of idealised supercells using two double-moment bulk microphysics schemes and a bin microphysics scheme. The simulations cover a comprehensive range of values for cloud droplet number concentration (CDNC) and cloud condensation nuclei (CCN) concentration as a proxy for aerosol effects on convective clouds. We have developed a new cloud tracking algorithm to analyse the morphology and time evolution of individually tracked convective cells in the simulations and their response to the aerosol perturbations. This analysis confirms an expected decrease in warm rain formation processes due to autoconversion and accretion for more polluted conditions. There is no evidence of a significant increase in the total amount of latent heat, as changes to the individual components of the integrated latent heating in the cloud compensate each other. The latent heating from freezing and riming processes is shifted to a higher altitude in the cloud, but there is no significant change to the integrated latent heat from freezing. Different choices in the treatment of deposition and sublimation processes between the microphysics schemes lead to strong differences including feedbacks onto condensation and evaporation. These changes in the microphysical processes explain some of the response in cloud mass and the altitude of the cloud centre of gravity. However, there remain some contrasts in the development of the bulk cloud parameters between the microphysics schemes and the two simulated cases.


2019 ◽  
Author(s):  
Constanze Wellmann ◽  
Andrew I. Barrett ◽  
Jill S. Johnson ◽  
Michael Kunz ◽  
Bernhard Vogel ◽  
...  

Abstract. Severe hailstorms have the potential to damage buildings and crops. However, important processes for the prediction of hailstorms are insufficiently represented in operational weather forecast models. Therefore, our goal is to identify model input parameters describing environmental conditions and cloud microphysics, such as vertical wind shear and strength of ice multiplication, which lead to large uncertainties in the prediction of deep convective clouds and precipitation. We conduct a comprehensive sensitivity analysis simulating deep convective clouds in an idealized setup of a cloud-resolving model. We use statistical emulation and variance-based sensitivity analysis to enable a Monte Carlo sampling of the model outputs across the multi-dimensional parameter space. The results show that the model dynamical and microphysical properties are sensitive to both the environmental and microphysical uncertainties in the model. The microphysical parameters, especially the fall velocity of hail, lead to larger uncertainties in the output of integrated hydrometeor masses and precipitation variables. In contrast, variations in the environmental conditions mainly affect the vertical profiles of the diabatic heating rates.


2015 ◽  
Vol 72 (12) ◽  
pp. 4661-4679 ◽  
Author(s):  
Wojciech W. Grabowski ◽  
Dorota Jarecka

Abstract Two schemes for modeling condensation in warm nonprecipitating clouds are compared. The first one is the efficient bulk condensation scheme where cloudy volumes are always at saturation and cloud water evaporates instantaneously to maintain saturation. The second one is the comprehensive bin condensation scheme that predicts the evolution of the cloud droplet spectrum and allows sub- and supersaturations in cloudy volumes. The emphasis is on the impact of the two schemes on cloud dynamics. Theoretical considerations show that the bulk condensation scheme provides more buoyancy than the bin scheme, but the effect is small, with the potential density temperature difference around 0.1 K for 1% supersaturation. The 1D advection–condensation tests document the high-vertical-resolution requirement for the bin scheme to resolve the cloud-base supersaturation maximum and CCN activation, which is difficult to employ in 3D cloud simulations. Simulations of shallow convection cloud fields are executed applying bulk and bin schemes, with the mean droplet concentrations in the bin scheme covering a wide range, from about 5 to over 4000 cm−3. Simulations employ the microphysical piggybacking methodology to extract impacts with high confidence. They show that the differences in cloud fields simulated with bulk and bin schemes come not from small differences in the condensation but from more significant differences in the evaporation of cloud water near cloud edges as a result of entrainment and mixing with the environment. The latter makes the impact of cloud microphysics on simulated macroscopic cloud field properties even more difficult to assess because of highly uncertain subgrid-scale parameterizations.


2020 ◽  
Vol 13 (8) ◽  
pp. 4219-4245
Author(s):  
Simon Pfreundschuh ◽  
Patrick Eriksson ◽  
Stefan A. Buehler ◽  
Manfred Brath ◽  
David Duncan ◽  
...  

Abstract. Remote sensing observations at sub-millimeter wavelengths provide higher sensitivity to small hydrometeors and low water content than observations at millimeter wavelengths, which are traditionally used to observe clouds and precipitation. They are employed increasingly in field campaigns to study cloud microphysics and will be integrated into the global meteorological observing system to measure the global distribution of ice in the atmosphere with the launch of the Ice Cloud Imager (ICI) radiometer on board the second generation of European operational meteorological satellites (Metop-SG). Observations at these novel wavelengths provide valuable information not only on their own but also in combination with complementary observations at other wavelengths. This study investigates the potential of combining passive sub-millimeter radiometer observations with a hypothetical W-band cloud radar for the retrieval of frozen hydrometeors. An idealized cloud model is used to investigate the information content of the combined observations and establish their capacity to constrain the microphysical properties of ice hydrometeors. A synergistic retrieval algorithm for airborne observations is proposed and applied to simulated observations from a cloud-resolving model. Results from the synergistic retrieval are compared to equivalent radar- and passive-only implementations in order to assess the benefits of the synergistic sensor configuration. The impact of the assumed ice particle shape on the retrieval results is assessed for all retrieval implementations. We find that the combined observations better constrain the microphysical properties of ice hydrometeors, which reduces uncertainties in retrieved ice water content and particle number concentrations for suitable choices of the ice particle model. Analysis of the retrieval information content shows that, although the radar contributes the largest part of the information in the combined retrieval, the radiometer observations provide complementary information over a wide range of atmospheric states. Furthermore, the combined observations yield slightly improved retrievals of liquid cloud water in mixed-phase clouds, pointing towards another potential application of combined radar–radiometer observations.


2021 ◽  
Author(s):  
Zhiqiang Cui ◽  
Alan Blyth ◽  
Gary Lloyd ◽  
Thomas Choularton ◽  
Keith Bower ◽  
...  

Abstract. This paper examines the mechanisms responsible for the production of ice in convective clouds influenced by mineral dust. Observations were made in the Ice in Clouds Experiment – Dust (ICE-D) field campaign which took place in the vicinity of Cape Verde during August 2015. Measurements made with instruments on the FAAM aircraft through the clouds on 21 August showed that ice particles were observed in high concentrations at temperatures greater than about −8 °C. Sensitivity studies were performed using existing parametrisation schemes in a cloud model to explore the impact of the freezing onset temperature, the efficiency of freezing, mineral dust as efficient ice nuclei, and multi-thermals on secondary ice production by the rime-splintering process. The simulation with the default Morrison microphysics scheme (Morrison et al., 2005) that involved a single thermal produced a concentration of secondary ice that was much lower than the observed value of total ice number concentration. Relaxing the onset temperature to a higher value, enhancing the freezing efficiency, or combinations of these, increased the secondary ice particle concentration, but not by a sufficient amount. Simulations that involved only dust particles as ice nucleating particles produced a lower concentration of secondary ice particles, since the freezing onset temperature is low. The simulations implicate that a higher concentration of ice nucleating particles with a higher freezing onset temperature may explain some of the observed high concentrations of secondary ice. However, a simulation with two thermals that used the original Morrison scheme without enhancement or relaxation produced the greatest concentration of secondary ice particles. It did so because of the increased time that graupel particles were exposed to significant cloud liquid water content in the Hallett-Mossop temperature zone. The forward-facing camera and measurements of the vertical wind in repeated passes of the same cloud suggested that these tropical clouds contained multiple thermals. Hence, in a similar way to other convective clouds observed elsewhere in the world, it is likely that multi-thermals play an important role in producing very high concentrations of secondary ice particles in some tropical clouds.


2018 ◽  
Author(s):  
Max Heikenfeld ◽  
Bethan White ◽  
Laurent Labbouz ◽  
Philip Stier

Abstract. The impact of aerosols on ice- and mixed-phase processes in deep convective clouds remains highly uncertain and the wide range of interacting microphysical processes are still poorly understood. To understand these processes, we analyse diagnostic output of all individual microphysical process rates for two cloud microphysics schemes in the Weather and Research Forecasting model (WRF). We investigate the response of individual processes to changes in aerosol conditions and the propagation of perturbations through the microphysics all the way to the macrophysical development of the convective clouds. We perform simulations for two different cases of idealised supercells using two double-moment bulk microphysics schemes and a bin microphysics scheme. We use simulations with a comprehensive range of values for cloud droplet number concentration (CDNC) and cloud condensation nuclei (CCN) concentration as a proxy for aerosol effects on convective clouds. We have developed a new cloud tracking algorithm to analyse the morphology and time evolution of individually tracked convective cells in the simulations and their response to the aerosol perturbations. This analysis confirms an expected decrease in warm rain formation processes due to autoconversion and accretion for polluted conditions. The height at which the freezing occurs increases with increasing CDNC. However, there is no evidence of a significant increase in the total amount of latent heat release from freezing and riming. The cloud mass and the altitude of the cloud centre of gravity show contrasting responses to changes in proxies for aerosol number concentration between the different microphysics schemes.


Sign in / Sign up

Export Citation Format

Share Document