scholarly journals Modelling light scattering by mineral dust using spheroids: assessment of applicability

2011 ◽  
Vol 11 (11) ◽  
pp. 5347-5363 ◽  
Author(s):  
S. Merikallio ◽  
H. Lindqvist ◽  
T. Nousiainen ◽  
M. Kahnert

Abstract. We study the applicability of spheroidal model particles for simulating the single-scattering optical properties of mineral dust aerosols. To assess the range of validity of this model, calculations are compared to laboratory observations for five different dust samples at two wavelengths. We further investigate whether the best-fit shape distributions of spheroids for different mineral dust samples have any similarities that would allow us to suggest a generic first-guess shape distribution for suspended mineral dust. We find that best-fit shape distributions vary considerably between samples and even between wavelengths, making definitive suggestions for a shape distribution difficult. The best-fit shape distribution also depends strongly on the refractive index assumed and the cost function adopted. However, a power-law shape distribution which favours those spheroids that depart most from the spherical shape is found to work well in most cases. To reproduce observed asymmetry parameters, best results are obtained with a power-law shape distribution with an exponent around three.

2011 ◽  
Vol 11 (2) ◽  
pp. 3977-4016 ◽  
Author(s):  
S. Merikallio ◽  
H. Lindqvist ◽  
T. Nousiainen ◽  
M. Kahnert

Abstract. We study the applicability of spheroidal model particles for simulating the single scattering optical properties of mineral dust aerosols. To assess the range of validity of this model, calculations are compared to laboratory observations for five different dust samples at two wavelengths. We further investigate whether the best-fit shape distributions of spheroids for different samples have any similarities that would allow us to suggest a generic first-guess shape distribution for suspended mineral dust. We find that best-fit shape distributions vary considerably between samples and even between wavelengths, making definitive suggestions for a shape distribution difficult. The best-fit shape distribution also depends strongly on the refractive index assumed and the cost function adopted. However, a power-law shape distribution which favours those spheroids that depart most from the spherical shape is found to work well in most cases. To reproduce observed asymmetry parameters, best results are obtained with a power-law distribution with an exponent around three.


2011 ◽  
Vol 11 (9) ◽  
pp. 4469-4490 ◽  
Author(s):  
S. Otto ◽  
T. Trautmann ◽  
M. Wendisch

Abstract. Realistic size equivalence and shape of Saharan mineral dust particles are derived from in-situ particle, lidar and sun photometer measurements during SAMUM-1 in Morocco (19 May 2006), dealing with measured size- and altitude-resolved axis ratio distributions of assumed spheroidal model particles. The data were applied in optical property, radiative effect, forcing and heating effect simulations to quantify the realistic impact of particle non-sphericity. It turned out that volume-to-surface equivalent spheroids with prolate shape are most realistic: particle non-sphericity only slightly affects single scattering albedo and asymmetry parameter but may enhance extinction coefficient by up to 10 %. At the bottom of the atmosphere (BOA) the Saharan mineral dust always leads to a loss of solar radiation, while the sign of the forcing at the top of the atmosphere (TOA) depends on surface albedo: solar cooling/warming over a mean ocean/land surface. In the thermal spectral range the dust inhibits the emission of radiation to space and warms the BOA. The most realistic case of particle non-sphericity causes changes of total (solar plus thermal) forcing by 55/5 % at the TOA over ocean/land and 15 % at the BOA over both land and ocean and enhances total radiative heating within the dust plume by up to 20 %. Large dust particles significantly contribute to all the radiative effects reported. They strongly enhance the absorbing properties and forward scattering in the solar and increase predominantly, e.g., the total TOA forcing of the dust over land.


2010 ◽  
Vol 10 (11) ◽  
pp. 29191-29247
Author(s):  
S. Otto ◽  
T. Trautmann ◽  
M. Wendisch

Abstract. Realistic size equivalence and shape of Saharan mineral dust particles are derived from on in-situ particle, lidar and sun photometer measurements during SAMUM-1 in Morocco (19 May 2006), dealing with measured size- and altitude-resolved axis ratio distributions of assumed spheroidal model particles. The data were applied in optical property, radiative effect, forcing and heating effect simulations to quantify the realistic impact of particle non-sphericity. It turned out that volume-to-surface equivalent spheroids with prolate shape are most realistic: particle non-sphericity only slightly affects single scattering albedo and asymmetry parameter but may enhance extinction coefficient by up to 10%. At the bottom of the atmosphere (BOA) the Saharan mineral dust always leads to a loss of solar radiation, while the sign of the forcing at the top of the atmosphere (TOA) depends on surface albedo: solar cooling/warming over a mean ocean/land surface. In the thermal spectral range the dust inhibits the emission of radiation to space and warms the BOA. The most realistic case of particle non-sphericity causes changes of total (solar plus thermal) forcing by 55/5% at the TOA over ocean/land and 15% at the BOA over both land and ocean and enhances total radiative heating within the dust plume by up to 20%. Large dust particles significantly contribute to all the radiative effects reported.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3611
Author(s):  
Sandra Gonzalez-Piedra ◽  
Héctor Hernández-García ◽  
Juan M. Perez-Morales ◽  
Laura Acosta-Domínguez ◽  
Juan-Rodrigo Bastidas-Oyanedel ◽  
...  

In this paper, a study on the feasibility of the treatment of raw cheese whey by anaerobic co-digestion using coffee pulp residues as a co-substrate is presented. It considers raw whey generated in artisanal cheese markers, which is generally not treated, thus causing environmental pollution problems. An experimental design was carried out evaluating the effect of pH and the substrate ratio on methane production at 35 °C (i.e., mesophilic conditions). The interaction of the parameters on the co-substrate degradation and the methane production was analyzed using a response surface analysis. Furthermore, two kinetic models were proposed (first order and modified Gompertz models) to determine the dynamic profiles of methane yield. The results show that co-digestion of the raw whey is favored at pH = 6, reaching a maximum yield of 71.54 mLCH4 gVSrem−1 (31.5% VS removed) for raw cheese whey and coffee pulp ratio of 1 gVSwhey gVSCoffe−1. The proposed kinetic models successfully fit the experimental methane production data, the Gompertz model being the one that showed the best fit. Then, the results show that anaerobic co-digestion can be used to reduce the environmental impact of raw whey. Likewise, the methane obtained can be integrated into the cheese production process, which could contribute to reducing the cost per energy consumption.


2019 ◽  
Vol 290 ◽  
pp. 02006
Author(s):  
Anca Mocan ◽  
Anca Draghici

Lack of appropriate warehouse ergonomics is one of the leading causes of worker injuries in industry environments. As management teams are trying to reduce the cost of doing business, they look to worker’s health statistics and realize they must improve their way of operating. The paper presents a warehouse analysis done at the request of the management team of a Belgian manufacturing plant. The factory’s warehouse was audited with focus on Kanban bin weight, storage rack height and rack width to assess the ergonomic strain it causes on workers. The paper then presents possible automation options in order to find the best fit to reduce ergonomic impact, while also optimizing the total investment cost.


2021 ◽  
Vol 22 (3) ◽  
pp. 1436
Author(s):  
Giovanni Consolati ◽  
Eros Mossini ◽  
Dario Nichetti ◽  
Fiorenza Quasso ◽  
Giuseppe Maria Viola ◽  
...  

The free volume fraction of a macromolecular structure can be assessed theoretically by using a suitable model; however, it can also be evaluated from experimental data obtained from dilatometry and positron annihilation lifetime spectra. In this second case, a regular geometry of the sub-nanometric cavities forming the free volume has to be assumed, although in fact they are irregularly shaped. The most popular approach is to guess spherical holes, which implies an isotropic growth of these last with temperature. In this work, we compared the free volume fraction, as obtained from experiments in a set of polybutadiene and polyisoprene cured rubbers and their blends, with the analogous quantity expected by using the lattice-hole model. The results allowed us to obtain insights on the approximate shape of the holes. Indeed, a cylindrical flattened geometry of the cavities produced a better agreement with the theory than the spherical shape. Furthermore, the best fit was obtained for holes that expanded preferentially in the radial direction, with a consequent decrease of the aspect ratio with temperature.


1987 ◽  
Vol 111 ◽  
Author(s):  
D. E. Aspnes ◽  
A. Heller

AbstractFilms of Pt, Pd, Rh, and Re with metal volume fractions of 0.3 to 0.5 have been prepared by mass-transport-limited photoelectrodeposition onto (001) p-InP photocathodes from ∼5 × 10−5 M solutions of the metal ions in 1 M HClO4. These films exhibit their normal catalytic activities (e.g., in hydrogen evolution) and have normal crystal structures, yet are substantially more transparent than equivalent dense films of the same metal loading per unit area. Effective-medium analysis of the spectroellipsometrically measured dielectric functions of these films shows that the anomalous transparency is due to microstructure: depolarization factors and metal packing fractions obtained by best-fit model calculations indicate dendritic (Rh), particulate (Pt, Pd), or platelet (Re) forms that are poorly interconnected in directions parallel to the surface, and whose dimensions are all small compared to the wavelength of light. Transmission electron micrographs confirm these results and reveal that these films consist of primary building blocks of ca. 5 nm crystallites that are organized into relatively loosely packed secondary structures. Potential applications of these films include the formation of efficient metallic-catalyst-coated photoelectrodes on poor-quality semiconductors.


1997 ◽  
Vol 06 (04) ◽  
pp. 425-447 ◽  
Author(s):  
Takeshi Fukuyama ◽  
Yuuko Kakigi ◽  
Takashi Okamura

Nontransparent models of the multipole expansion model and the two point-mass model are analyzed from the catastrophe theory. Singularity behaviours of 2n-pole moments are discussed. We apply these models to the triple quasar PG1115+080 and compare with the typical transparent model, softened power law spheroids. The multipole expansion model gives the best fit among them.


2018 ◽  
Vol 157 ◽  
pp. 08003 ◽  
Author(s):  
Jana Galliková ◽  
Vladimír Stuchlý ◽  
Roman Poprocký ◽  
Peter Volna

Designing the content and scale of maintenance of machines and equipment by a priori and posterior reliability methods in considered crucial to reducing the cost of the machine's life cycle, maintaining high operational readiness and reducing the consequences of failures. In the presented paper, attention is paid to the analysis of the calculation methods of posterior reliability for calculation indicators of reliability and to the use of the specified Weibull model for reliability calculations. The obtained results are further developed for models of optimal process calculations to perform scheduled maintenance interventions. Calculations of the other RAMS (reliability, availability, maintainability and safety) indicators that are critical to the design of an optimal engineering design with regard to maintenance and which do not receive sufficient attention in technical practice are also assessed.


Sign in / Sign up

Export Citation Format

Share Document