scholarly journals Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx

2012 ◽  
Vol 12 (1) ◽  
pp. 207-223 ◽  
Author(s):  
L. I. Kleinman ◽  
P. H. Daum ◽  
Y.-N. Lee ◽  
E. R. Lewis ◽  
A. J. Sedlacek III ◽  
...  

Abstract. During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O3 and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 °C with dry air descending from the upper atmospheric and moist air having a boundary layer (BL) contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (Dp>100 nm) gives a linear relation up to a number concentration of ~150 cm−3, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that ~25 % of aerosol with Dp>100 nm are interstitial (not activated). A direct comparison of pre-cloud and in-cloud aerosol yields a higher estimate. Artifacts in the measurement of interstitial aerosol due to droplet shatter and evaporation are discussed. Within each of 102 constant altitude cloud transects, CDNC and interstitial aerosol were anti-correlated. An examination of one cloud as a case study shows that the interstitial aerosol appears to have a background, upon which is superimposed a high frequency signal that contains the anti-correlation. The anti-correlation is a possible source of information on particle activation or evaporation.

2011 ◽  
Vol 11 (6) ◽  
pp. 17289-17336 ◽  
Author(s):  
L. I. Kleinman ◽  
P. H. Daum ◽  
Y.-N. Lee ◽  
E. R. Lewis ◽  
A. J. Sedlacek ◽  
...  

Abstract. During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O3 and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate in agreement with the dominant pollution source being SO2 from Cu smelters and power plants. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 °C with dry air descending from the upper atmospheric and moist air having a BL contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (Dp > 100 nm) gives a linear relation up to a number concentration of ~150 cm−3, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that ~25 % of aerosol in the PCASP size range are interstitial (not activated). One hundred and two constant altitude cloud transects were identified and used to determine properties of interstitial aerosol. One transect is examined in detail as a case study. Approximately 25 to 50 % of aerosol with Dp > 110 nm were not activated, the difference between the two approaches possibly representing shattered cloud droplets or unknown artifact. CDNC and interstitial aerosol were anti-correlated in all cloud transects, consistent with the occurrence of dry in-cloud areas due to entrainment or circulation mixing.


2018 ◽  
Vol 18 (19) ◽  
pp. 14623-14636 ◽  
Author(s):  
Michael S. Diamond ◽  
Amie Dobracki ◽  
Steffen Freitag ◽  
Jennifer D. Small Griswold ◽  
Ashley Heikkila ◽  
...  

Abstract. The colocation of clouds and smoke over the southeast Atlantic Ocean during the southern African biomass burning season has numerous radiative implications, including microphysical modulation of the clouds if smoke is entrained into the marine boundary layer. NASA's ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) campaign is studying this system with aircraft in three field deployments between 2016 and 2018. Results from ORACLES-2016 show that the relationship between cloud droplet number concentration and smoke below cloud is consistent with previously reported values, whereas cloud droplet number concentration is only weakly associated with smoke immediately above cloud at the time of observation. By combining field observations, regional chemistry–climate modeling, and theoretical boundary layer aerosol budget equations, we show that the history of smoke entrainment (which has a characteristic mixing timescale on the order of days) helps explain variations in cloud properties for similar instantaneous above-cloud smoke environments. Precipitation processes can obscure the relationship between above-cloud smoke and cloud properties in parts of the southeast Atlantic, but marine boundary layer carbon monoxide concentrations for two case study flights suggest that smoke entrainment history drove the observed differences in cloud properties for those days. A Lagrangian framework following the clouds and accounting for the history of smoke entrainment and precipitation is likely necessary for quantitatively studying this system; an Eulerian framework (e.g., instantaneous correlation of A-train satellite observations) is unlikely to capture the true extent of smoke–cloud interaction in the southeast Atlantic.


2021 ◽  
Author(s):  
Lukas Zipfel ◽  
Hendrik Andersen ◽  
Jan Cermak

<p>Satellite observations are used in regional machine learning models to quantify sensitivities of marine boundary-layer clouds (MBLC) to aerosol changes.</p><p>MBLCs make up a large part of the global cloud coverage as they are persistently present over more than 20% of the Earth’s oceans in the annual mean.They play an important role in Earth’s energy budget by reflecting solar radiation and interacting with thermal radiation from the surface, leading to a net cooling effect. Cloud properties and their radiative characteristics such as cloud albedo, horizontal and vertical extent, lifetime and precipitation susceptibility are dependent on environmental conditions. Aerosols in their role as condensation nuclei affect these cloud radiative properties through changes in the cloud droplet number concentration and subsequent cloud adjustments to this perturbation. However, the magnitude and sign of these effects remain among the largest uncertainties in future climate predictions.</p><p>In an effort to help improve these predictions a machine learning approach in combination with observational data is pursued:</p><p>Satellite observations from the collocated A-Train dataset (C3M) for 2006-2011 are used in combination with ECMWF atmospheric reanalysis data (ERA5) to train regional Gradient Boosting Regression Tree (GBRT) models to predict changes in key physical and radiative properties of MBLCs. The cloud droplet number concentration (N<sub>d</sub>) and the liquid water path (LWP) are simulated for the eastern subtropical oceans, which are characterised by a high annual coverage of MBLC due to the occurrence of semi-permanent stratocumulus sheets. Relative humidity above cloud, cloud top height and temperature below the cloud base and at the surface are identified as important predictors for both N<sub>d</sub> and LWP.  The impact of each predictor variable on the GBRT model's output is analysed using Shapley values as a method of explainable machine learning, providing novel sensitivity estimates that will improve process understanding and help constrain the parameterization of MBLC processes in Global Climate Models.</p>


2015 ◽  
Vol 15 (3) ◽  
pp. 1367-1383 ◽  
Author(s):  
J. C. Schroder ◽  
S. J. Hanna ◽  
R. L. Modini ◽  
A. L. Corrigan ◽  
S. M. Kreidenwies ◽  
...  

Abstract. Size-resolved observations of aerosol particles and cloud droplet residuals were studied at a marine boundary layer site (251 m a.m.s.l.) in La Jolla, San Diego, California, during 2012. A counterflow virtual impactor (CVI) was used as the inlet to sample cloud residuals while a total inlet was used to sample both cloud residuals and interstitial particles. Two cloud events totaling 10 h of in-cloud sampling were analyzed. Based on bulk aerosol particle concentrations, mass concentrations of refractory black carbon (rBC), and back trajectories, the two air masses sampled were classified as polluted marine air. Since the fraction of cloud droplets sampled by the CVI was less than 100%, the measured activated fractions of rBC should be considered as lower limits to the total fraction of rBC activated during the two cloud events. Size distributions of rBC and a coating analysis showed that sub-100 nm rBC cores with relatively thick coatings were incorporated into the cloud droplets (i.e., 95 nm rBC cores with median coating thicknesses of at least 65 nm were incorporated into the cloud droplets). Measurements also show that the coating volume fraction of rBC cores is relatively large for sub-100 nm rBC cores. For example, the median coating volume fraction of 95 nm rBC cores incorporated into cloud droplets was at least 0.9, a result that is consistent with κ-Köhler theory. Measurements of the total diameter of the rBC-containing particles (rBC core and coating) suggest that the total diameter of rBC-containing particles needed to be at least 165 nm to be incorporated into cloud droplets when the core rBC diameter is ≥ 85 nm. This result is consistent with previous work that has shown that particle diameter is important for activation of non-rBC particles. The activated fractions of rBC determined from the measurements ranged from 0.01 to 0.1 for core rBC diameters ranging from 70 to 220 nm. This type of data is useful for constraining models used for predicting rBC concentrations in the atmosphere.


2018 ◽  
Author(s):  
Michael S. Diamond ◽  
Amie Dobracki ◽  
Steffen Freitag ◽  
Jennifer D. Small Griswold ◽  
Ashley Heikkila ◽  
...  

Abstract. The colocation of clouds and smoke over the southeast Atlantic Ocean during the southern African biomass burning season has numerous radiative implications, including microphysical modulation of the clouds if smoke is entrained into the marine boundary layer. NASA’s ObseRvtions of Aerosols above CLouds and their intEractionS (ORACLES) campaign is studying this system with aircraft in three field deployments between 2016 and 2018. Results from ORACLES-2016 show that the relationship between cloud droplet number concentration and smoke below cloud is consistent with previously reported values, whereas cloud droplet number concentration is only weakly associated with smoke immediately above cloud at the time of observation. Combining field observations, regional chemistry–climate modeling, and theoretical boundary layer aerosol budget equations, we show that the history of smoke entrainment (which has a characteristic mixing timescale on the order of days) helps explain variations in cloud properties for similar instantaneous above-cloud smoke environments. Precipitation processes are also expected to obscure the relationship between above-cloud smoke and cloud properties in parts of the southeast Atlantic, although marine boundary layer carbon monoxide concentrations for two case study flights suggest that smoke entrainment history drove the observed differences in cloud properties for those days. A Lagrangian framework following the clouds and accounting for the history of smoke entrainment and precipitation is likely necessary for quantitatively studying this system: an Eulerian framework (e.g., instantaneous correlation of A-train satellite observations) is unlikely to capture the true extent of smoke–cloud interaction in the southeast Atlantic.


2014 ◽  
Vol 71 (8) ◽  
pp. 2927-2943 ◽  
Author(s):  
Zhiqiang Cui ◽  
Alan Gadian ◽  
Alan Blyth ◽  
Jonathan Crosier ◽  
Ian Crawford

Abstract Observations are presented of the structure of the marine boundary layer (MBL) in the southeastern Pacific made with the U.K. BAe 146 aircraft on 13 November 2008 as it flew at a variety of altitudes along 20°S between the coast of Chile and a buoy 950 km offshore during the Variability of American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study (VOCALS) Regional Experiment (REx). The purpose of the study is to determine the variations along the 20°S transect in the clouds and boundary layer on this particular day as compared to the typical structure determined from the composite studies. The aircraft flew in three regions on this day: relatively continuous thick stratocumulus clouds, open cells, and closed cells. Results show three particular features. First, the results of the cloud microphysics are consistent with the typical behavior showing a decrease in aerosol particles by a factor of 3–4, and a decrease in cloud droplet number concentration westward from the coast from about 200 to 100 cm−3 or less with a corresponding increase in the concentration of drizzle drops with a maximum in open cells. Sulfate was dominant in the aerosol mass. Second, there was evidence of decoupling of the marine boundary layer that coincided with a change in the cloud type from stratiform to convective. The case differs from the average found in VOCALS in that the decoupling is not consistent with the deepening–warming idea. Precipitation is thought to possibly be the cause instead, suggesting that aerosol might play a controlling role in the cloud–boundary layer structure. Finally, cold pools were observed in the MBL from the dropsonde data.


2018 ◽  
Vol 75 (5) ◽  
pp. 1653-1673 ◽  
Author(s):  
Kuan-Ting O ◽  
Robert Wood ◽  
Christopher S. Bretherton

In Part I, aircraft observations are used to show that ultraclean layers (UCLs) in the marine boundary layer (MBL) are a common feature of the stratocumulus-to-cumulus transition (SCT) region over the northeast Pacific. The ultraclean layers are defined as layers of either cloud or clear air in which the concentration of particles with diameter larger than 0.1 μm is below 10 cm−3. Here, idealized microphysical parcel modeling shows that in the cumulus regime, collision–coalescence can strongly deplete cloud droplet concentration in cumulus (Cu) updrafts, thereby removing cloud condensation nuclei (CCN) from the atmosphere, suggesting that collision scavenging is likely the key process causing the low particle concentration in UCLs. Furthermore, the model results suggest that the stratocumulus regime is typically not favorable for UCL formation, because condensate amounts are generally not large enough to deplete drops in the time it takes to loft air to the upper planetary boundary layer (PBL). A bulk parameterization of the coalescence-scavenging rate is derived based on in situ measurements. The fractional coalescence-scavenging rate is found to be strongly dependent upon liquid water content (LWC) and, hence, the height above cloud base, indicating that a higher cloud top and thus a greater cloud thickness in a Cu updraft is an important factor accounting for the observed sharp rise of UCL coverage in the SCT region. An important implication is that PBL height, which controls maximum cloud thickness, and therefore LWC in updrafts, could be a crucial factor constraining coalescence scavenging and thus the formation of UCLs in the MBL.


2013 ◽  
Vol 13 (16) ◽  
pp. 8489-8503 ◽  
Author(s):  
D. Jarecka ◽  
H. Pawlowska ◽  
W. W. Grabowski ◽  
A. A. Wyszogrodzki

Abstract. This paper discusses aircraft observations and large-eddy simulation (LES) modeling of 15 May 2008, North Sea boundary-layer clouds from the EUCAARI-IMPACT field campaign. These clouds are advected from the northeast by the prevailing lower-tropospheric winds and featured stratocumulus-over-cumulus cloud formations. An almost-solid stratocumulus deck in the upper part of the relatively deep, weakly decoupled marine boundary layer overlays a field of small cumuli. The two cloud formations have distinct microphysical characteristics that are in general agreement with numerous past observations of strongly diluted shallow cumuli on one hand and solid marine stratocumulus on the other. Based on the available observations, a LES model setup is developed and applied in simulations using a novel LES model. The model features a double-moment warm-rain bulk microphysics scheme combined with a sophisticated subgrid-scale scheme allowing local prediction of the homogeneity of the subgrid-scale turbulent mixing. The homogeneity depends on the characteristic time scales for the droplet evaporation and for the turbulent homogenization. In the model, these scales are derived locally based on the subgrid-scale turbulent kinetic energy, spatial scale of cloudy filaments, mean cloud droplet radius, and humidity of the cloud-free air entrained into a cloud, all predicted by the LES model. The model reproduces contrasting macrophysical and microphysical characteristics of the cumulus and stratocumulus cloud layers. Simulated subgrid-scale turbulent mixing within the cumulus layer and near the stratocumulus top is on average quite inhomogeneous, but varies significantly depending on the local conditions.


Sign in / Sign up

Export Citation Format

Share Document