scholarly journals Ultraclean Layers and Optically Thin Clouds in the Stratocumulus-to-Cumulus Transition. Part II: Depletion of Cloud Droplets and Cloud Condensation Nuclei through Collision–Coalescence

2018 ◽  
Vol 75 (5) ◽  
pp. 1653-1673 ◽  
Author(s):  
Kuan-Ting O ◽  
Robert Wood ◽  
Christopher S. Bretherton

In Part I, aircraft observations are used to show that ultraclean layers (UCLs) in the marine boundary layer (MBL) are a common feature of the stratocumulus-to-cumulus transition (SCT) region over the northeast Pacific. The ultraclean layers are defined as layers of either cloud or clear air in which the concentration of particles with diameter larger than 0.1 μm is below 10 cm−3. Here, idealized microphysical parcel modeling shows that in the cumulus regime, collision–coalescence can strongly deplete cloud droplet concentration in cumulus (Cu) updrafts, thereby removing cloud condensation nuclei (CCN) from the atmosphere, suggesting that collision scavenging is likely the key process causing the low particle concentration in UCLs. Furthermore, the model results suggest that the stratocumulus regime is typically not favorable for UCL formation, because condensate amounts are generally not large enough to deplete drops in the time it takes to loft air to the upper planetary boundary layer (PBL). A bulk parameterization of the coalescence-scavenging rate is derived based on in situ measurements. The fractional coalescence-scavenging rate is found to be strongly dependent upon liquid water content (LWC) and, hence, the height above cloud base, indicating that a higher cloud top and thus a greater cloud thickness in a Cu updraft is an important factor accounting for the observed sharp rise of UCL coverage in the SCT region. An important implication is that PBL height, which controls maximum cloud thickness, and therefore LWC in updrafts, could be a crucial factor constraining coalescence scavenging and thus the formation of UCLs in the MBL.

2007 ◽  
Vol 64 (7) ◽  
pp. 2657-2669 ◽  
Author(s):  
Robert Wood

Abstract Applying perturbation theory within a mixed layer framework, the response of the marine boundary layer (MBL) cloud thickness h to imposed increases of the cloud droplet concentration Nd as a surrogate for increases in cloud condensation nuclei (CCN) concentrations is examined. An analytical formulation is used to quantify the response and demonstrate theoretically that for the range of environmental conditions found over the subtropical eastern oceans, on time scales of less than a day, the cloud thickness feedback response is largely determined by a balance between the moistening/cooling of the MBL resulting from the suppression of surface precipitation, and the drying/warming resulting from enhanced entrainment resulting from increased turbulent kinetic energy. Quantifying the transient cloud response as a ratio of the second to the first indirect effects demonstrates that the nature of the feedback is critically dependent upon the nature of the unperturbed state, with the cloud-base height zcb being the single most important determinant. For zcb < 400 m, increasing Nd leads to cloud thickening in accordance with the Albrecht hypothesis. However, for zcb > 400 m, cloud thinning occurs, which results in a feedback effect that increasingly cancels the Twomey effect as zcb increases. The environmental conditions favoring an elevated cloud base are relatively weak lower-tropospheric stability and a dry free troposphere, although the former is probably more important over the subtropical eastern oceans. On longer time scales an invariable thickening response is found, and thus accurate quantification of the aerosol indirect effects will require a good understanding of the processes that control the time scale over which aerosol perturbations are modified.


2010 ◽  
Vol 67 (9) ◽  
pp. 3006-3018 ◽  
Author(s):  
James G. Hudson ◽  
Stephen Noble ◽  
Vandana Jha

Abstract More than 140 supercooled clouds were compared with corresponding out-of-cloud cloud condensation nuclei (CCN) measurements. In spite of significant differences in altitude, temperature, distances from cloud base, updraft velocity (W), entrainment, and so on, the correlation coefficients (R) between droplet and CCN concentrations were substantial although not as high as those obtained in warm clouds with less variability of nonaerosol influences. CCN at slightly lower altitudes than the clouds had higher R values than CCN measured at the same altitude. Ice particle concentrations appeared to reduce droplet concentrations and reduce R between CCN and droplet concentrations, but only above 6-km altitude and for temperatures below −20°C. Although higher CCN concentrations generally resulted in higher droplet concentrations, increases in droplet concentrations were generally less than the increases in CCN concentrations. This was apparently due to the expected lower cloud supersaturations (S) when CCN concentrations are higher as was usually the case at lower altitudes. Cloud supersaturations showed more variability at higher altitudes and often very high values at higher altitudes. The use of liquid water content rather than droplet concentrations for cloud threshold resulted in higher R between CCN and droplet concentrations. The same R pattern for cumulative droplet–CCN concentrations as a function of threshold droplet sizes as that recently uncovered in warm clouds was found. This showed R changing rapidly from positive values when all cloud droplets were considered to negative values for slightly larger droplet size thresholds. After reaching a maximum negative value at intermediate droplet sizes, R then reversed direction to smaller negative or even positive values for larger cloud droplet size thresholds. This R pattern of CCN concentrations versus cumulative droplet concentrations for increasing size thresholds is consistent with adiabatic model predictions and thus suggests even greater CCN influence on cloud microphysics.


2015 ◽  
Vol 15 (1) ◽  
pp. 47-76 ◽  
Author(s):  
E. Jung ◽  
B. A. Albrecht ◽  
H. H. Jonsson ◽  
Y.-C. Chen ◽  
J. H. Seinfeld ◽  
...  

Abstract. To study the effect of giant cloud condensation nuclei (GCCN) on precipitation processes in stratocumulus clouds, 1–10 μm diameter salt particles (salt powder) were released from an aircraft while flying near cloud top on 3 August 2011 off the central coast of California. The seeded area was subsequently sampled from the aircraft that was equipped with aerosol, cloud, and precipitation probes and an upward-facing cloud radar. During post-seeding sampling, made 30–60 min after seeding, the mean cloud droplet size increased, the droplet number concentration decreased, and large drop (e.g., diameter larger than 10 μm) concentration increased. Average drizzle rates increased from about 0.05 to 0.20 mm h−1, and liquid water path decreased from about 52 to 43 g m−2. Strong radar returns associated with drizzle were observed on the post-seeding cloud-base level-leg flights and were accompanied by a substantial depletion of the cloud liquid water content. The changes were large enough to suggest that the salt particles with concentrations estimated to be 10−2 to 10−4 cm−3 resulted in a four-fold increase in the cloud base rainfall rate and depletion of the cloud water due to rainout. In contrast, a case is shown where the cloud was already precipitating (on 10 August) and the effect of adding GCCN to the cloud was insignificant.


2015 ◽  
Vol 15 (10) ◽  
pp. 5645-5658 ◽  
Author(s):  
E. Jung ◽  
B. A. Albrecht ◽  
H. H. Jonsson ◽  
Y.-C. Chen ◽  
J. H. Seinfeld ◽  
...  

Abstract. To study the effect of giant cloud condensation nuclei (GCCN) on precipitation processes in stratocumulus clouds, 1–10 μm diameter salt particles (salt powder) were released from an aircraft while flying near the cloud top on 3 August 2011 off the central coast of California. The seeded area was subsequently sampled from the aircraft that was equipped with aerosol, cloud, and precipitation probes and an upward-facing cloud radar. During post-seeding sampling, made 30–60 min after seeding, the mean cloud droplet size increased, the droplet number concentration decreased, and large drop (e.g., diameter larger than 10 μm) concentration increased. Average drizzle rates increased from about 0.05 to 0.20 mm h−1, and the liquid water path decreased from about 52 to 43 g m−2. Strong radar returns associated with drizzle were observed on the post-seeding cloud-base level-leg flights and were accompanied by a substantial depletion of the cloud liquid water content. The changes were large enough to suggest that the salt particles with concentrations estimated to be 10−2 to 10-4 cm−3 resulted in a four-fold increase in the cloud-base rainfall rate and depletion of the cloud water due to rainout. In contrast, a case is shown where the cloud was already precipitating (on 10 August) and the effect of adding GCCN to the cloud was insignificant.


2020 ◽  
Author(s):  
Tim Bates ◽  
Patricia Quinn

<p>The fair-weather cumulus clouds, that cover much of the low-latitude oceans, affect the radiation balance of the planet by reflecting incoming solar radiation and absorbing outgoing longwave radiation.  These clouds also drive atmospheric circulation by mixing the lower atmosphere in a process called shallow convection.  This mixing, in turn, affects sea surface temperature and salinity by moderating the air-sea exchange of energy and moisture.  Marine boundary layer (MBL) atmospheric aerosols play a role in the processes described above by scattering and absorbing solar radiation and by serving as cloud condensation nuclei (CCN) thereby influencing cloud droplet concentrations and size; the extent, lifetime, and albedo of clouds; and the frequency and intensity of precipitation. Quantifying the role of aerosols over the Northwest Tropical Atlantic is critical to advance understanding of shallow convection and air-sea interactions.</p><p>MBL aerosol properties were measured aboard the RV Ronald H. Brown during the EUREC4A and ATOMIC field studies in January/February 2020.  Aerosols encountered during the study include background sulfate/sea spray particles and African dust/biomass burning particles.  Aerosol physical, chemical, optical and cloud condensation nuclei properties will be presented and their interaction with local and regional circulation.</p>


2005 ◽  
Vol 62 (9) ◽  
pp. 3011-3033 ◽  
Author(s):  
R. Wood

Abstract Detailed observations of stratiform boundary layer clouds on 12 days are examined with specific reference to drizzle formation processes. The clouds differ considerably in mean thickness, liquid water path (LWP), and droplet concentration. Cloud-base precipitation rates differ by a factor of 20 between cases. The lowest precipitation rate is found in the case with the highest droplet concentration even though this case had by far the highest LWP, suggesting that drizzle can be severely suppressed in polluted clouds. The vertical and horizontal structure of cloud and drizzle liquid water and bulk microphysical parameters are examined in detail. In general, the highest concentration of r > 20 μm drizzle drops is found toward the top of the cloud, and the mean volume radius of the drizzle drops increases monotonically from cloud top to base. The resulting precipitation rates are largest at the cloud base but decrease markedly only in the upper third of the cloud. Below cloud, precipitation rates decrease markedly with distance below base due to evaporation, and are broadly consistent in most cases with the results from a simple sedimentation–evaporation model. Evidence is presented that suggests evaporating drizzle is cooling regions of the subcloud layer, which could result in dynamical feedbacks. A composite power spectrum of the horizontal spatial series of precipitation rate is found to exhibit a power-law scaling from the smallest observable scales to close to the maximum observable scale (∼30 km). The exponent is considerably lower (1.1–1.2) than corresponding exponents for LWP variability obtained in other studies (∼1.5–2), demonstrating that there is relatively more variability of drizzle on small scales. Singular measures analysis shows that drizzle fields are much more intermittent than the cloud liquid water content fields, consistent with a drizzle production process that depends strongly upon liquid water content. The adiabaticity of the clouds, which can be modeled as a simple balance between drizzle loss and turbulent replenishment, is found to decrease if the time scale for drizzle loss is shorter than roughly 5–10 eddy turnover time scales. Finally, the data are compared with three simple scalings derived from recent observations of drizzle in subtropical stratocumulus clouds.


2011 ◽  
Vol 11 (1) ◽  
pp. 885-916 ◽  
Author(s):  
H. Wang ◽  
P. J. Rasch ◽  
G. Feingold

Abstract. We use a cloud-system-resolving model to study marine-cloud brightening. We examine how injected aerosol particles that act as cloud condensation nuclei (CCN) are transported within the marine boundary layer and how the additional particles in clouds impact cloud microphysical processes, and feedback on dynamics. Results show that the effectiveness of cloud brightening depends strongly on meteorological and background aerosol conditions. Cloud albedo enhancement is very effective in a weakly precipitating boundary layer and in CCN-limited conditions preceded by heavy and/or persistent precipitation. The additional CCN help sustain cloud water by weakening the precipitation substantially in the former case and preventing the boundary layer from collapse in the latter. For a given amount of injected CCN, the injection method (i.e., number and distribution of sprayers) is critical to the spatial distribution of these CCN. Both the areal coverage and the number concentration of injected particles are key players but neither one always emerges as more important than the other. The same amount of injected material is much less effective in either strongly precipitating clouds or polluted clouds, and it is ineffective in a relatively dry boundary layer that supports clouds of low liquid water path. In the polluted case and "dry" case, the CCN injection increases drop number concentration but lowers supersaturation and liquid water path. As a result, the cloud experiences very weak albedo enhancement, regardless of the injection method.


2019 ◽  
Author(s):  
Pascal Polonik ◽  
Christoph Knote ◽  
Tobias Zinner ◽  
Florian Ewald ◽  
Tobias Kölling ◽  
...  

Abstract. The realistic representation of cloud-aerosol interactions is of primary importance for accurate climate model projections. The investigation of these interactions in strongly contrasting clean and polluted atmospheric conditions in the Amazon area has been one of the motivations for several field observations, including the airborne Aerosol, Cloud, Precipitation, and Radiation Interactions and DynamIcs of CONvective cloud systems – Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitation Measurement) (ACRIDICON-CHUVA) campaign based in Manaus, Brazil in September 2014. In this work we combine in situ and remotely sensed aerosol, cloud, and atmospheric radiation data collected during ACRIDICON-CHUVA with regional, online-coupled chemistry-transport simulations to evaluate the model’s ability to represent the indirect effects of biomass burning aerosol on cloud microphysical properties (droplet number concentration and effective radius). We found agreement between modeled and observed median cloud droplet number concentrations (CDNC) for low values of CDNC, i.e., low levels of pollution. In general, a linear relationship between modeled and observed CDNC with a slope of two was found, which means a systematic underestimation of modeled CDNC as compared to measurements. Variability in cloud condensation nuclei (CCN) number concentrations and cloud droplet effective radii (reff) was also underestimated by the model. Modeled effective radius profiles began to saturate around 500 CCN per cm3 at cloud base, indicating an upper limit for the model sensitivity well below CCN concentrations reached during the burning season in the Amazon Basin. Regional background aerosol concentrations were sufficiently high such that the additional CCN emitted from local fires did not cause a notable change in modelled cloud microphysical properties. In addition, we evaluate a parameterization of CDNC at cloud base using more readily available cloud microphysical properties, aimed at in situ observations and satellite retrievals. Our study casts doubt on the validity of regional scale modeling studies of the cloud albedo effect in convective situations for polluted situations where the number concentration of CCN is greater than 500 cm−3.


Sign in / Sign up

Export Citation Format

Share Document