scholarly journals Technical Note: One year of Raman-lidar measurements in Gual Pahari EUCAARI site close to New Delhi in India – Seasonal characteristics of the aerosol vertical structure

2012 ◽  
Vol 12 (10) ◽  
pp. 4513-4524 ◽  
Author(s):  
M. Komppula ◽  
T. Mielonen ◽  
A. Arola ◽  
K. Korhonen ◽  
H. Lihavainen ◽  
...  

Abstract. One year of multi-wavelength (3 backscatter + 2 extinction + 1 depolarization) Raman lidar measurements at Gual Pahari, close to New Delhi, were analysed. The data was split into four seasons: spring (March–May), summer (June–August), autumn (September–November) and winter (December–February). The vertical profiles of backscatter, extinction, and lidar ratio and their variability during each season are presented. The measurements revealed that, on average, the aerosol layer was at its highest in spring (5.5 km). In summer, the vertically averaged (between 1–3 km) backscatter and extinction coefficients had the highest averages (3.3 Mm−1 sr−1 and 142 Mm−1 at 532 nm, respectively). Aerosol concentrations were slightly higher in summer compared to other seasons, and particles were larger in size. The autumn showed the highest lidar ratio and high extinction-related Ångström exponents (AEext), indicating the presence of smaller probably absorbing particles. The winter had the lowest backscatter and extinction coefficients, but AEext was the highest, suggesting still a large amount of small particles.

2010 ◽  
Vol 10 (12) ◽  
pp. 31123-31151 ◽  
Author(s):  
M. Komppula ◽  
T. Mielonen ◽  
A. Arola ◽  
K. Korhonen ◽  
H. Lihavainen ◽  
...  

Abstract. One year of multi-wavelength (3+2) Raman lidar measurements at Gual Pahari, close to Delhi, were analysed. The data was split into four seasons: spring (March–May), summer (June–August), autumn (September–November) and winter (December–February). The vertical profiles of backscatter, extinction, and lidar ratio and their variability during each season are presented. The measurements revealed that, on average, the aerosol layer was at its highest in spring (5.5 km). In summer, the vertically averaged (between 1–3 km) backscatter and extinction coefficients had the highest averages (3.3 Mm−1 sr−1 and 142 Mm−1 at 532 nm, respectively). Aerosol concentrations were slightly higher in summer compared with other seasons, and particles were larger in size. The autumn showed the highest lidar ratio and high extinction-related Ångström exponents (AEext), indicating the presence of smaller probably absorbing particles. The winter had the lowest backscatter and extinction coefficients, but AEext was the highest, suggesting still a large amount of small particles.


2020 ◽  
Vol 237 ◽  
pp. 02009
Author(s):  
Benedetto De Rosa ◽  
Paolo Di Girolamo ◽  
Donato Summa ◽  
Dario Stellitano

This extended abstract reports measurements that were carried out by the Raman lidar system BASIL in the frame of the Hydrological Cycle in the Mediterranean Experiment – Special Observation Period 1 (HyMeX-SOP1). A specific case study was selected revealing the presence of variable aerosol properties at different altitudes. Specifically, Raman lidar measurements on 02 October 2012 reveal the presence of two distinct aerosol layers, a lower one extending up to ~3 km and an upper one extending from 3.5 km to 4.7 km. Aerosol and size microphysical properties are determined from multi-wavelength measurements of particle backscattering and extinction profiles based on the application of a retrieval scheme which employs Tikhonov’s inversion with regularization. Inversion results suggest a size distribution with the presence, in both the lower and upper aerosol layer, of two particle modes (a fine mode, with a radius of ~0.2 μm, and a coarse mode, with radii in the range 2-4 μm), volume concentration values of 2-4 mm3cm-3 and effective radii in the range 0.2-0.6 μm. This effort benefited from the dedicated flights of the French research aircraft ATR42, equipped with a variety of in situ sensors for measuring aerosol/cloud size and microphysical properties. Aerosol size and microphysical properties retrieved from multi-wavelength Raman lidar measurements were compared with simultaneous and co-located in-situ measurements.


2020 ◽  
Author(s):  
Geraint Vaughan ◽  
David Wareing ◽  
Hugo Ricketts

Abstract. On 22 June 2019 the Raikoke volcano in the Kuril islands erupted, sending a plume of ash and sulphur dioxide into the stratosphere. A Raman lidar system at Capel Dewi Atmospheric Observatory, UK (52.4° N, 4.1° W) has been used to measure the extent and optical depth of the stratospheric aerosol layer following the eruption. The elastic channel allowed measurements up to 25 km, but the Raman channel was only sensitive to the troposphere. Therefore, backscatter ratio profiles were derived by comparison with aerosol-free profiles derived from nearby radiosondes, corrected for aerosol extinction with a lidar ratio of 40–50 sr. Small amounts of aerosol were measured prior to the arrival of the volcanic cloud, probably from pyroconvection over Canada. Volcanic ash may have first arrived as a thin layer at 14 km late on 3 July, and was certainly detected from 13 July onwards, eventually extending up to 20.5 km. Aerosol optical depths reached around 0.05 by early August, decaying thereafter to around 0.01 by the end of 2019 and remaining around that level until May 2020. The location of peak backscatter varied considerably but was generally around 15 km. However, on one notable occasion on 25 August, a layer around 300 m thick with peak lidar backscatter ratio around 1.5 was observed as high as 21 km.


2020 ◽  
Author(s):  
Benedetto De Rosa ◽  
Paolo Di Girolamo ◽  
Donato Summa

<p>Tropospheric aerosols  are a fundamental component of the Earth’s radiation budget. In order to properly estimate their direct and indirect effect, accurate measurements of aerosol size and microphysical properties are required.A limited number of techniques are presently available and capable to provide these measurements.</p><p>Multi-wavelength Raman lidars Raman lidars have strong potential. However,theireffectiveness and reliability of need to be assessed and verified against independent measurements.</p><p>This abstract reports measurements that were carried out by the Raman lidar system BASIL in the frame of the Hydrological Cycle in the Mediterranean Experiment – Special Observation Period 1 (HyMeX-SOP1).The considered dataset represents a good opportunity to verify the quality of retrievals in terms of size and microphysical properties obtained from multi-wavelength Raman lidars.</p><p>A specific case study was selected revealing the presence of variable aerosol properties at different altitudes. Specifically, Raman lidar measurements on 02 October 2012 show the presence of two distinct aerosol layers, a lower one extending up to ~3 km and an upper one extending from 3.5 km to 4.7 km. Aerosol and size microphysical properties are determined from multi-wavelength measurements of particle backscattering and extinction profiles based on the application of  a retrieval scheme which employs Tikhonov’s inversion with regularization. Inversion results suggest a size distribution with the presence, in both the lower and upper aerosol layer, of two particle modes (a fine mode, with a radius of ~0.2 mm, and a coarse mode, with radii in the range 2-4 mm), volume concentration values of 2-4 mm<sup>3</sup>cm<sup>-3</sup>and effective radii in the  range 0.2-0.6 mm.</p><p>This effort benefited from the dedicated flights of the French research aircraft ATR42, equipped with a variety of in situ sensors for measuring aerosol/cloud size and microphysical properties. Aerosol size and microphysical properties retrieved from multi-wavelength Raman lidar measurements were compared with simultaneous and co-located in-situ measurements.</p>


2011 ◽  
Vol 11 (4) ◽  
pp. 12763-12803 ◽  
Author(s):  
L. Mona ◽  
A. Amodeo ◽  
G. D'Amico ◽  
A. Giunta ◽  
F. Madonna ◽  
...  

Abstract. Multi-wavelength Raman lidar measurements were performed at CNR-IMAA Atmospheric Observatory (CIAO) during the entire Eyjafjallajökull explosive eruptive period in April–May 2010, whenever weather conditions permitted. A methodology for volcanic layer identification and accurate aerosol typing has been developed on the basis both of the multi-wavelength Raman lidar measurements and EARLINET measurements performed at CIAO since 2000. The aerosol mask for lidar measurements performed at CIAO during the 2010 Eyjafjallajökull eruption has been obtained. Volcanic aerosol layers have been observed in different periods: 19–22 April, 27–29 April, 8–9 May, 13–14 May and 18–19 May. A maximum aerosol optical depth of about 0.12–0.13 was observed on 20 April, 22:00 UTC and 13 May, 20:30 UTC. Volcanic particles have been detected both at low altitudes, in the free troposphere and in the upper troposphere. Intrusions into the PBL have been revealed on 21–22 April and 13 May. In the April–May period Saharan dust intrusions typically occur in Southern Italy. For the period under investigations, a Saharan dust intrusion was observed on 13–14 May: dust and volcanic particles have been simultaneously observed at CIAO both at separated different levels and mixed within the same layer. Lidar ratios at 355 and 532 nm, Ångström exponent at 355/532 nm, backscatter related Ångström exponent at 532/1064 nm and particle linear depolarization ratio at 532 nm measured inside the detected volcanic layers have been discussed. The dependence of these quantities on relative humidity (RH) has been investigated by using co-located microwave profiler measurements. The particle linear depolarization ratio increasing with RH, lidar ratio values at 355 nm around 80 sr, and values of the ratio of lidar ratios greater than 1 suggest the presence of sulfates mixed with continental aerosol. Lower lidar ratio values (around 40 sr) increasing with RH and values of the ratio of lidar ratios lower than 1 indicate the presence of some aged ash inside these sulfate layers.


2014 ◽  
Vol 14 (16) ◽  
pp. 8781-8793 ◽  
Author(s):  
L. Mona ◽  
N. Papagiannopoulos ◽  
S. Basart ◽  
J. Baldasano ◽  
I. Binietoglou ◽  
...  

Abstract. In this paper, we report the first systematic comparison of 12-year modeled dust extinction profiles vs. Raman lidar measurements. We use the BSC-DREAM8b model, one of the most widely used dust regional models in the Mediterranean, and Potenza EARLINET lidar profiles for Saharan dust cases, the largest one-site database of dust extinction profiles. A total of 310 dust cases were compared for the May 2000–July 2012 period. The model reconstructs the measured layers well: profiles are correlated within 5% of significance for 60% of the cases and the dust layer center of mass as measured by lidar and modeled by BSC-DREAM8b differ on average 0.3 ± 1.0 km. Events with a dust optical depth lower than 0.1 account for 70% of uncorrelated profiles. Although there is good agreement in terms of profile shape and the order of magnitude of extinction values, the model overestimates the occurrence of dust layer top above 10 km. Comparison with extinction profiles measured by the Raman lidar shows that BSC-DREAM8b typically underestimates the dust extinction coefficient, in particular below 3 km. Lowest model–observation differences (below 17%) correspond to a lidar ratio at 532 nm and Ångström exponent at 355/532 nm of 60 ± 13 and 0.1 ± 0.6 sr, respectively. These are in agreement with values typically observed and modeled for pure desert dust. However, the highest differences (higher than 85%) are typically related to greater Ångström values (0.5 ± 0.6), denoting smaller particles. All these aspects indicate that the level of agreement decreases with an increase in mixing/modification processes.


2016 ◽  
Vol 9 (9) ◽  
pp. 4269-4278 ◽  
Author(s):  
Moritz Haarig ◽  
Ronny Engelmann ◽  
Albert Ansmann ◽  
Igor Veselovskii ◽  
David N. Whiteman ◽  
...  

Abstract. For the first time, vertical profiles of the 1064 nm particle extinction coefficient obtained from Raman lidar observations at 1058 nm (nitrogen and oxygen rotational Raman backscatter) are presented. We applied the new technique in the framework of test measurements and performed several cirrus observations of particle backscatter and extinction coefficients, and corresponding extinction-to-backscatter ratios at the wavelengths of 355, 532, and 1064 nm. The cirrus backscatter coefficients were found to be equal for all three wavelengths keeping the retrieval uncertainties in mind. The multiple-scattering-corrected cirrus extinction coefficients at 355 nm were on average about 20–30 % lower than the ones for 532 and 1064 nm. The cirrus-mean extinction-to-backscatter ratio (lidar ratio) was 31 ± 5 sr (355 nm), 36 ± 5 sr (532 nm), and 38 ± 5 sr (1064 nm) in this single study. We further discussed the requirements needed to obtain aerosol extinction profiles in the lower troposphere at 1064 nm with good accuracy (20 % relative uncertainty) and appropriate temporal and vertical resolution.


2018 ◽  
Vol 11 (2) ◽  
pp. 949-969 ◽  
Author(s):  
Igor Veselovskii ◽  
Philippe Goloub ◽  
Thierry Podvin ◽  
Didier Tanre ◽  
Arlindo da Silva ◽  
...  

Abstract. Observations of multiwavelength Mie–Raman lidar taken during the SHADOW field campaign are used to analyze a smoke–dust episode over West Africa on 24–27 December 2015. For the case considered, the dust layer extended from the ground up to approximately 2000 m while the elevated smoke layer occurred in the 2500–4000 m range. The profiles of lidar measured backscattering, extinction coefficients, and depolarization ratios are compared with the vertical distribution of aerosol parameters provided by the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). The MERRA-2 model simulated the correct location of the near-surface dust and elevated smoke layers. The values of modeled and observed aerosol extinction coefficients at both 355 and 532 nm are also rather close. In particular, for the episode reported, the mean value of difference between the measured and modeled extinction coefficients at 355 nm is 0.01 km−1 with SD of 0.042 km−1. The model predicts significant concentration of dust particles inside the elevated smoke layer, which is supported by an increased depolarization ratio of 15 % observed in the center of this layer. The modeled at 355 nm the lidar ratio of 65 sr in the near-surface dust layer is close to the observed value (70 ± 10) sr. At 532 nm, however, the simulated lidar ratio (about 40 sr) is lower than measurements (55 ± 8 sr). The results presented demonstrate that the lidar and model data are complimentary and the synergy of observations and models is a key to improve the aerosols characterization.


2013 ◽  
Vol 6 (6) ◽  
pp. 10481-10510
Author(s):  
F. Navas-Guzmán ◽  
J. Fernández-Gálvez ◽  
M. J. Granados-Muñoz ◽  
J. L. Guerrero-Rascado ◽  
J. A. Bravo-Aranda ◽  
...  

Abstract. In this paper, we outline an iterative method to calibrate the water vapour mixing ratio profiles retrieved from Raman lidar measurements. Simultaneous and co-located radiosonde data are used for this purpose and the calibration results obtained during a radiosonde campaign performed in Summer and Autumn 2011 are presented. The water vapour profiles measured during nighttime by the Raman lidar and radiosondes are compared and the differences between the methodologies are discussed. Moreover, a new approach to obtain relative humidity profiles by combination of simultaneous profiles of temperature (retrieved from a microwave radiometer) and water vapour mixing ratio (from a Raman lidar) is addressed. In the last part of this work, a statistical analysis of water vapour mixing ratio and relative humidity profiles obtained during one year of simultaneous measurements is presented.


Sign in / Sign up

Export Citation Format

Share Document