scholarly journals EARLINET dust observations vs. BSC-DREAM8b modeled profiles: 12-year-long systematic comparison at Potenza, Italy

2014 ◽  
Vol 14 (16) ◽  
pp. 8781-8793 ◽  
Author(s):  
L. Mona ◽  
N. Papagiannopoulos ◽  
S. Basart ◽  
J. Baldasano ◽  
I. Binietoglou ◽  
...  

Abstract. In this paper, we report the first systematic comparison of 12-year modeled dust extinction profiles vs. Raman lidar measurements. We use the BSC-DREAM8b model, one of the most widely used dust regional models in the Mediterranean, and Potenza EARLINET lidar profiles for Saharan dust cases, the largest one-site database of dust extinction profiles. A total of 310 dust cases were compared for the May 2000–July 2012 period. The model reconstructs the measured layers well: profiles are correlated within 5% of significance for 60% of the cases and the dust layer center of mass as measured by lidar and modeled by BSC-DREAM8b differ on average 0.3 ± 1.0 km. Events with a dust optical depth lower than 0.1 account for 70% of uncorrelated profiles. Although there is good agreement in terms of profile shape and the order of magnitude of extinction values, the model overestimates the occurrence of dust layer top above 10 km. Comparison with extinction profiles measured by the Raman lidar shows that BSC-DREAM8b typically underestimates the dust extinction coefficient, in particular below 3 km. Lowest model–observation differences (below 17%) correspond to a lidar ratio at 532 nm and Ångström exponent at 355/532 nm of 60 ± 13 and 0.1 ± 0.6 sr, respectively. These are in agreement with values typically observed and modeled for pure desert dust. However, the highest differences (higher than 85%) are typically related to greater Ångström values (0.5 ± 0.6), denoting smaller particles. All these aspects indicate that the level of agreement decreases with an increase in mixing/modification processes.

2013 ◽  
Vol 13 (12) ◽  
pp. 31363-31407
Author(s):  
L. Mona ◽  
N. Papagiannopoulos ◽  
S. Basart ◽  
J. Baldasano ◽  
I. Binietoglou ◽  
...  

Abstract. In this paper, we report the first systematic comparison between dust extinction profiles forecasted by a model and measured by a Raman lidar. We use the BSC-DREAM8b model, one of the most widely used dust regional models in the Mediterranean, and Potenza EARLINET lidar profiles for Saharan dust cases, the largest one-site database of dust extinction profiles. A total of 310 dust cases were compared for the May 2000–July 2012 period. The model well reconstructs the measured layering: profiles are correlated within 5% of significance for 60% of the cases and the dust layer center of mass as measured by lidar and modeled by BSC-DREAM8b differ on average 0.3 ± 1.0 km. Cases with a dust optical depth lower than 0.1 account for 70% of uncorrelated profiles. Although the good agreement in terms of profile shape and extinction value order of magnitude, the comparison with extinction profiles measured by the Raman lidar shows that BSC-DREAM8b typically underestimate the dust extinction coefficient in particular below 3.5 km and for low concentrations and overestimates the occurrence of dust layer top height above 15 km.


2020 ◽  
Vol 237 ◽  
pp. 02020
Author(s):  
Hossein Panahifar ◽  
Ruhollah Moradhaseli ◽  
Hadi Bourzoie ◽  
Mahdi Gholami ◽  
Hamid Reza Khalesifard

Optical properties of long-range Saharan dust particles transported to the Iran Plateau have been investigated. The results were derived from the measurements of a dual-wavelength Depolarized backscatter/Raman lidar and a Cimel CE318-2 sunphotometer. Observations were performed in Zanjan, Northwest Iran. The backward trajectory analysis show that the lofted dust plumes come from the Saharan desert and travel along Mediterranean Sea and Turkey toward Iran. The lidar ratio within the lofted dust layer has been found with mean values of 50 sr at 532 nm. For the depolarization ratio, mean values of 25% have been found.


2011 ◽  
Vol 11 (4) ◽  
pp. 12763-12803 ◽  
Author(s):  
L. Mona ◽  
A. Amodeo ◽  
G. D'Amico ◽  
A. Giunta ◽  
F. Madonna ◽  
...  

Abstract. Multi-wavelength Raman lidar measurements were performed at CNR-IMAA Atmospheric Observatory (CIAO) during the entire Eyjafjallajökull explosive eruptive period in April–May 2010, whenever weather conditions permitted. A methodology for volcanic layer identification and accurate aerosol typing has been developed on the basis both of the multi-wavelength Raman lidar measurements and EARLINET measurements performed at CIAO since 2000. The aerosol mask for lidar measurements performed at CIAO during the 2010 Eyjafjallajökull eruption has been obtained. Volcanic aerosol layers have been observed in different periods: 19–22 April, 27–29 April, 8–9 May, 13–14 May and 18–19 May. A maximum aerosol optical depth of about 0.12–0.13 was observed on 20 April, 22:00 UTC and 13 May, 20:30 UTC. Volcanic particles have been detected both at low altitudes, in the free troposphere and in the upper troposphere. Intrusions into the PBL have been revealed on 21–22 April and 13 May. In the April–May period Saharan dust intrusions typically occur in Southern Italy. For the period under investigations, a Saharan dust intrusion was observed on 13–14 May: dust and volcanic particles have been simultaneously observed at CIAO both at separated different levels and mixed within the same layer. Lidar ratios at 355 and 532 nm, Ångström exponent at 355/532 nm, backscatter related Ångström exponent at 532/1064 nm and particle linear depolarization ratio at 532 nm measured inside the detected volcanic layers have been discussed. The dependence of these quantities on relative humidity (RH) has been investigated by using co-located microwave profiler measurements. The particle linear depolarization ratio increasing with RH, lidar ratio values at 355 nm around 80 sr, and values of the ratio of lidar ratios greater than 1 suggest the presence of sulfates mixed with continental aerosol. Lower lidar ratio values (around 40 sr) increasing with RH and values of the ratio of lidar ratios lower than 1 indicate the presence of some aged ash inside these sulfate layers.


2012 ◽  
Vol 12 (4) ◽  
pp. 2229-2244 ◽  
Author(s):  
L. Mona ◽  
A. Amodeo ◽  
G. D'Amico ◽  
A. Giunta ◽  
F. Madonna ◽  
...  

Abstract. During the eruption of Eyjafjallajökull in April–May 2010 multi-wavelength Raman lidar measurements were performed at the CNR-IMAA Atmospheric Observatory (CIAO), whenever weather conditions permitted observations. A methodology both for volcanic layer identification and accurate aerosol typing has been developed. This methodology relies on the multi-wavelength Raman lidar measurements and the support of long-term lidar measurements performed at CIAO since 2000. The aerosol mask for lidar measurements performed at CIAO during the 2010 Eyjafjallajökull eruption has been obtained. Volcanic aerosol layers were observed in different periods: 19–22 April, 27–29 April, 8–9 May, 13–14 May and 18–19 May. A maximum aerosol optical depth of about 0.12–0.13 was observed on 20 April, 22:00 UTC and 13 May, 20:30 UTC. Volcanic particles were detected at low altitudes, in the free troposphere and in the upper troposphere. Occurrences of volcanic particles within the PBL were detected on 21–22 April and 13 May. A Saharan dust event was observed on 13–14 May: dust and volcanic particles were simultaneously detected at CIAO at separated different altitudes as well as mixed within the same layer. Lidar ratios at 355 and 532 nm, the Ångström exponent at 355/532 nm, the backscatter-related Ångström exponent at 532/1064 nm and the particle linear depolarization ratio at 532 nm measured inside the detected volcanic layers are discussed. The dependence of these quantities on relative humidity has been investigated by using co-located microwave profiler measurements. The measured values of these intensive parameters indicate the presence of volcanic sulfates/continental mixed aerosol in the volcanic aerosol layers observed at CIAO. In correspondence of the maxima observed in the volcanic aerosol load on 19–20 April and 13 May, different values of intensive parameters were observed. Apart from the occurrence of sulfate aerosol, these values indicate also the presence of some ash which is affected by the aging during transport over Europe.


2018 ◽  
Author(s):  
Moritz Haarig ◽  
Albert Ansmann ◽  
Holger Baars ◽  
Cristofer Jimenez ◽  
Igor Veselovskii ◽  
...  

Abstract. Extremely high particle extinction coefficients, an order of magnitude higher than after the Mt. Pinatubo eruption in 1991, were measured in the stratosphere over Leipzig, Germany, on 22 August 2017. In a series of two articles, we present our observations of this record-breaking smoke event. In part 1 (Ansmann et al., 2018), we provide an overview of the smoke situation. The particle extinction coefficients reached 500 Mm−1 at 532 nm in the lower stratosphere around 15 km height and the smoke-related aerosol optical thickness (AOT) was close to 1.0 around noon. In part 2, we present the optical and microphysical properties of the fire smoke observed in a tropospheric layer from 5–6.5 km height and in a stratospheric layer from 15–16 km height. Three Raman lidars were run at Leipzig after sunset on 22 August. As a highlight, triple-wavelength polarization/Raman lidar measurements of the particle depolarization ratio and extinction-to-backscatter ratio (lidar ratio) at all three important lidar wavelengths of 355, 532, and 1064 nm could be performed. Very different particle depolarization ratios were found in the troposphere and in the stratosphere. The obviously compact and spherical tropospheric smoke particles caused almost no depolarization of backscattered laser radiation at all three wavelength (


2009 ◽  
Vol 27 (9) ◽  
pp. 3611-3620 ◽  
Author(s):  
A. Papayannis ◽  
R. E. Mamouri ◽  
V. Amiridis ◽  
S. Kazadzis ◽  
C. Pérez ◽  
...  

Abstract. In this paper we present a statistical analysis on the geometrical and optical properties of Saharan dust layers observed over Athens, Greece, in a three-year period from 1 January 2004 up to 31 December 2006. The observations of the vertical aerosol profile were performed by the multi-wavelength (355-532-1064-387-607 nm) Raman lidar system of the National Technical University of Athens (NTUA) operated in the city of Athens (37°98' N, 23°77' E), Greece, in the frame of the European Aerosol Research Lidar Network (EARLINET-ASOS) project. The number of dust events was greatest in late spring, summer, and early autumn periods. This was evident also by aerosol observations during dust outbreaks obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS). In our lidar measurements, multiple aerosol dust layers of variable thickness (680–4800 m) were observed. The center of mass of these layers was located in altitudes between 1600 and 5800 m. However, the mean thickness of the dust layer typically stayed around 2700 m and the corresponding mean center of mass was of the order of 2900 m. The top of the dust layer ranged from 2000 to 8000 m, with a mean value of the order of 4700 m. MODIS observations during dust outbreaks showed that the AOD values at 550 nm ranged between 0.3–0.6, while the corresponding Angström exponent (AE) values were of the order of 0.5–0.65, indicating the presence of rather large particles.


2015 ◽  
Vol 15 (23) ◽  
pp. 13453-13473 ◽  
Author(s):  
S. P. Burton ◽  
J. W. Hair ◽  
M. Kahnert ◽  
R. A. Ferrare ◽  
C. A. Hostetler ◽  
...  

Abstract. Linear particle depolarization ratio is presented for three case studies from the NASA Langley airborne High Spectral Resolution Lidar-2 HSRL-2). Particle depolarization ratio from lidar is an indicator of non-spherical particles and is sensitive to the fraction of non-spherical particles and their size. The HSRL-2 instrument measures depolarization at three wavelengths: 355, 532, and 1064 nm. The three measurement cases presented here include two cases of dust-dominated aerosol and one case of smoke aerosol. These cases have partial analogs in earlier HSRL-1 depolarization measurements at 532 and 1064 nm and in literature, but the availability of three wavelengths gives additional insight into different scenarios for non-spherical particles in the atmosphere. A case of transported Saharan dust has a spectral dependence with a peak of 0.30 at 532 nm with smaller particle depolarization ratios of 0.27 and 0.25 at 1064 and 355 nm, respectively. A case of aerosol containing locally generated wind-blown North American dust has a maximum of 0.38 at 1064 nm, decreasing to 0.37 and 0.24 at 532 and 355 nm, respectively. The cause of the maximum at 1064 nm is inferred to be very large particles that have not settled out of the dust layer. The smoke layer has the opposite spectral dependence, with the peak of 0.24 at 355 nm, decreasing to 0.09 and 0.02 at 532 and 1064 nm, respectively. The depolarization in the smoke case may be explained by the presence of coated soot aggregates. We note that in these specific case studies, the linear particle depolarization ratio for smoke and dust-dominated aerosol are more similar at 355 nm than at 532 nm, having possible implications for using the particle depolarization ratio at a single wavelength for aerosol typing.


2020 ◽  
Vol 237 ◽  
pp. 02022
Author(s):  
Igor Veselovskii ◽  
Philippe Goloub ◽  
Qiaoyun Hu ◽  
Thierry Podvin ◽  
Michail Korenskiy

The lidar ratios of Saharan dust at 355 and 532 nm (LR355 and LR532) measured over West Africa during SHADOW field campaign are analyzed. Results demonstrate that even for pure dust, the lidar ratio may present strong height dependence. The possible reasons of height dependence of lidar ratios during strong dust events are considered.


2017 ◽  
Author(s):  
Julian Hofer ◽  
Dietrich Althausen ◽  
Sabur F. Abdullaev ◽  
Abduvosit N. Makhmudov ◽  
Bakhron I. Nazarov ◽  
...  

Abstract. For the first time, continuous vertically resolved aerosol measurements were performed by lidar in Tajikistan, Central Asia. Observations with the multiwavelength polarization/Raman lidar PollyXT were conducted during CADEX (Central Asian Dust EXperiment) in Dushanbe, Tajikistan, from March 2015 to August 2016. Co-located with the lidar a sun photometer was operated. The goal of CADEX is to provide an unprecedented data set on vertically resolved aerosol optical properties in Central Asia, an area highly affected by climate change but largely missing vertically resolved aerosol measurements. During the 18-months measurement campaign, mineral dust was detected frequently from ground to cirrus level height. In this study, an overview of the measurement period is given and four typical but different example measurement cases are discussed in detail. Three of them are dust cases and one is a contrasting pollution aerosol case. Vertical profiles of the measured optical properties and the calculated dust and non-dust mass concentrations are presented. Dust source regions were identified by means of backward trajectory analyses. A lofted layer of Middle Eastern dust with an aerosol optical thickness (AOT) of 0.4 and an extinction-related Ångström exponent of 0.41 was measured. In comparison, two near-ground dust cases have Central Asian sources. One is an extreme dust event with an AOT of 1.5 and Ångström exponent of 0.12 and the other one is a most extreme dust event with an AOT of above 4 (measured by sun photometer) and an Ångström exponent of −0.08. The observed lidar ratios (particle linear depolarization ratios) in the presented dust cases range from 40.3 sr to 46.9 sr (0.18–0.29) at 355 nm and from 35.7 sr to 42.9 sr (0.31–0.35) at 532 nm wavelength. The particle linear depolarization ratios indicate almost unpolluted dust in the case of a lofted dust layer and pure dust in the near-ground dust cases. The lidar ratio values are lower than typical lidar ratio values for Saharan dust (50–60 sr) and comparable to Middle Eastern/West-Asian dust lidar ratios (35–45 sr). In contrast, the presented case of pollution aerosol of local origin has an Ångström exponent of 2.07 and a lidar ratio (particle linear depolarization ratio) of 55.8 sr (0.03) at 355 nm and 32.8 sr (0.08) at 532 nm wavelength.


2020 ◽  
Vol 13 (2) ◽  
pp. 893-905 ◽  
Author(s):  
Elina Giannakaki ◽  
Panos Kokkalis ◽  
Eleni Marinou ◽  
Nikolaos S. Bartsotas ◽  
Vassilis Amiridis ◽  
...  

Abstract. A new method, called ElEx (elastic extinction), is proposed for the estimation of extinction coefficient lidar profiles using only the information provided by the elastic and polarization channels of a lidar system. The method is applicable to lidar measurements both during daytime and nighttime under well-defined aerosol mixtures. ElEx uses the particle backscatter profiles at 532 nm and the vertically resolved particle linear depolarization ratio measurements at the same wavelength. The particle linear depolarization ratio and the lidar ratio values of pure aerosol types are also taken from literature. The total extinction profile is then estimated and compared well with Raman retrievals. In this study, ElEx was applied in an aerosol mixture of marine and dust particles at Finokalia station during the CHARADMExp campaign. Any difference between ElEx and Raman extinction profiles indicates that the nondust component could be probably attributed to polluted marine or polluted continental aerosols. Comparison with sun photometer aerosol optical depth observations is performed as well during daytime. Differences in the total aerosol optical depth are varying between 1.2 % and 72 %, and these differences are attributed to the limited ability of the lidar to correctly represent the aerosol optical properties in the near range due to the overlap problem.


Sign in / Sign up

Export Citation Format

Share Document