scholarly journals Iodine monoxide in the Western Pacific marine boundary layer

2013 ◽  
Vol 13 (6) ◽  
pp. 3363-3378 ◽  
Author(s):  
K. Großmann ◽  
U. Frieß ◽  
E. Peters ◽  
F. Wittrock ◽  
J. Lampel ◽  
...  

Abstract. A latitudinal cross-section and vertical profiles of iodine monoxide (IO) are reported from the marine boundary layer of the Western Pacific. The measurements were taken using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) during the TransBrom cruise of the German research vessel Sonne, which led from Tomakomai, Japan (42° N, 141° E) through the Western Pacific to Townsville, Australia (19° S, 146° E) in October 2009. In the marine boundary layer within the tropics (between 20° N and 5° S), IO mixing ratios ranged between 1 and 2.2 ppt, whereas in the subtropics and at mid-latitudes typical IO mixing ratios were around 1 ppt in the daytime. The profile retrieval reveals that the bulk of the IO was located in the lower part of the marine boundary layer. Photochemical simulations indicate that the organic iodine precursors observed during the cruise (CH3I, CH2I2, CH2ClI, CH2BrI) are not sufficient to explain the measured IO mixing ratios. Reasonable agreement between measured and modelled IO can only be achieved if an additional sea-air flux of inorganic iodine (e.g., I2) is assumed in the model. Our observations add further evidence to previous studies that reactive iodine is an important oxidant in the marine boundary layer.

2012 ◽  
Vol 12 (10) ◽  
pp. 27475-27519 ◽  
Author(s):  
K. Großmann ◽  
U. Frieß ◽  
E. Peters ◽  
F. Wittrock ◽  
J. Lampel ◽  
...  

Abstract. A latitudinal cross-section and vertical profiles of iodine monoxide (IO) are reported from the marine boundary layer of the Western Pacific. The measurements were taken using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) during the TransBrom cruise of the German research vessel Sonne, which led from Tomakomai, Japan (42° N, 141° E) through the Western Pacific to Townsville, Australia (19° S, 146° E) in October 2009. In the marine boundary layer within the tropics (between 20° N and 5° S), IO mixing ratios ranged between 1 and 2.2 ppt, whereas in the subtropics and at mid-latitudes typical IO mixing ratios were around 1 ppt in the daytime. The profile retrieval reveals that the bulk of the IO was located in the lower part of the marine boundary layer. Photochemical simulations indicate that the organic iodine precursors observed during the cruise (CH3I, CH2I2, CH2ClI, CH2BrI) are not sufficient to explain the measured IO mixing ratios. Reasonable agreement between measured and modelled IO can only be achieved, if an additional sea-air flux of inorganic iodine (e.g. I2) is assumed in the model. Our observations add further evidence to previous studies that reactive iodine is an important oxidant in the marine boundary layer.


2017 ◽  
Author(s):  
Liang Feng ◽  
Paul I. Palmer ◽  
Robyn Butler ◽  
Stephen J. Andrews ◽  
Elliot L. Atlas ◽  
...  

Abstract. We infer surface fluxes of bromoform (CHBr3) and dibromoform (CH2Br2) from aircraft observations over the western Pacific using a tagged version of the GEOS-Chem global 3-D atmospheric chemistry model and a Maximum A Posteriori inverse model. The distribution of a priori ocean emissions of these gases are reasonably consistent with observed atmospheric mole fractions of CHBr3 (r = 0.62) and CH2Br2 (r = 0.38). These a priori emissions result in a positive model bias in CHBr3 peaking in the marine boundary layer, but capture observed values of CH2Br2 with no significant bias by virtue of its longer atmospheric lifetime. Using GEOS-Chem, we find that observed variations in atmospheric CHBr3 are determined equally by sources over the western Pacific and those outside the study region, but observed variations in CH2Br2 are determined mainly by sources outside the western Pacific. Numerical closed-loop experiments show that the spatial and temporal distribution of boundary layer aircraft data have the potential to substantially improve current knowledge of these fluxes, with improvements related to data density. Using the aircraft data, we estimate aggregated regional fluxes of 3.6 ± 0.3 × 108 g/month and 0.7 ± 0.1 × 108 g/month for CHBr3 and CH2Br2 over 130°–155° E and 0°–12° N, respectively, which represent reductions of 20–40 % and substantial spatial deviations from the a priori inventory. We find no evidence to support a robust linear relationship between CHBr3 and CH2Br2 oceanic emissions, as used by previous studies.


2010 ◽  
Vol 10 (1) ◽  
pp. 361-390
Author(s):  
R.-J. Huang ◽  
K. Seitz ◽  
J. Buxmann ◽  
D. Poehler ◽  
K. E. Hornsby ◽  
...  

Abstract. "Single-point" in situ measurements of molecular iodine (I2) were carried out in the coastal marine boundary layer (MBL) using diffusion denuders in combination with a gas chromatography-mass spectrometry (GC-MS) method. Comparison measurements were taken at Mace Head and Mweenish Bay, on the West Coast of Ireland. The observed mixing ratios of I2 at Mweenish Bay are much higher than that at Mace Head, indicating the emissions of I2 are correlated with the local algal biomass density and algae species. The concentration levels of I2 were found to correlate inversely with tidal height and correlate positively with the concentration levels of O3 in the surrounding air. However, the released I2 can also lead to O3 destruction via the reaction of O3 with iodine atoms that are formed by the photolysis of I2 during the day and via the reaction of I2 with NOx at night. IO and OIO were measured by long-path differential optical absorption spectroscopy (LP-DOAS). The results show that the concentrations of both daytime and nighttime IO are correlated with the mixing ratios of I2. OIO was observed not only during the day but also, for the first time at both Mace Head and Mweenish Bay, at night. In addition, I2 was measured simultaneously by the LP-DOAS technique and compared with the "single-point" in situ measurement. The results suggest that the local algae sources dominate the inorganic iodine chemistry at Mace Head and Mweenish Bay.


2014 ◽  
Vol 7 (10) ◽  
pp. 3579-3595 ◽  
Author(s):  
S. Coburn ◽  
I. Ortega ◽  
R. Thalman ◽  
B. Blomquist ◽  
C. W. Fairall ◽  
...  

Abstract. Here we present first eddy covariance (EC) measurements of fluxes of glyoxal, the smallest α-dicarbonyl product of hydrocarbon oxidation, and a precursor for secondary organic aerosol (SOA). The unique physical and chemical properties of glyoxal – i.e., high solubility in water (effective Henry's law constant, KH = 4.2 × 105 M atm−1) and short atmospheric lifetime (~2 h at solar noon) – make it a unique indicator species for organic carbon oxidation in the marine atmosphere. Previous reports of elevated glyoxal over oceans remain unexplained by atmospheric models. Here we describe a Fast Light-Emitting Diode Cavity-Enhanced Differential Optical Absorption Spectroscopy (Fast LED-CE-DOAS) instrument to measure diurnal variations and EC fluxes of glyoxal and inform about its unknown sources. The fast in situ sensor is described, and first results are presented from a cruise deployment over the eastern tropical Pacific Ocean (20° N to 10° S; 133 to 85° W) as part of the Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated VOCs (TORERO) field experiment (January to March 2012). The Fast LED-CE-DOAS is a multispectral sensor that selectively and simultaneously measures glyoxal (CHOCHO), nitrogen dioxide (NO2), oxygen dimers (O4), and water vapor (H2O) with ~2 Hz time resolution (Nyquist frequency ~1 Hz) and a precision of ~40 pptv Hz−0.5 for glyoxal. The instrument is demonstrated to be a "white-noise" sensor suitable for EC flux measurements. Fluxes of glyoxal are calculated, along with fluxes of NO2, H2O, and O4, which are used to aid the interpretation of the glyoxal fluxes. Further, highly sensitive and inherently calibrated glyoxal measurements are obtained from temporal averaging of data (e.g., detection limit smaller than 2.5 pptv in an hour). The campaign average mixing ratio in the Southern Hemisphere (SH) is found to be 43 ± 9 pptv glyoxal, which is higher than the Northern Hemisphere (NH) average of 32 ± 6 pptv (error reflects variability over multiple days). The diurnal variation of glyoxal in the marine boundary layer (MBL) is measured for the first time, and mixing ratios vary by ~8 pptv (NH) and ~12 pptv (SH) over the course of 24 h. Consistently, maxima are observed at sunrise (NH: 35 ± 5 pptv; SH: 47 ± 7 pptv), and minima at dusk (NH: 27 ± 5 pptv; SH: 35 ± 8 pptv). In both hemispheres, the daytime flux was directed from the atmosphere into the ocean, indicating that the ocean is a net sink for glyoxal during the day. After sunset the ocean was a source for glyoxal to the atmosphere (positive flux) in the SH; this primary ocean source was operative throughout the night. In the NH, the nighttime flux was positive only shortly after sunset and negative during most of the night. Positive EC fluxes of soluble glyoxal over oceans indicate the presence of an ocean surface organic microlayer (SML) and locate a glyoxal source within the SML. The origin of most atmospheric glyoxal, and possibly other oxygenated hydrocarbons over tropical oceans, remains unexplained and warrants further investigation.


2010 ◽  
Vol 10 (10) ◽  
pp. 4823-4833 ◽  
Author(s):  
R.-J. Huang ◽  
K. Seitz ◽  
J. Buxmann ◽  
D. Pöhler ◽  
K. E. Hornsby ◽  
...  

Abstract. Discrete in situ atmospheric measurements of molecular iodine (I2) were carried out at Mace Head and Mweenish Bay on the west coast of Ireland using diffusion denuders in combination with a gas chromatography-mass spectrometry (GC-MS) method. I2, IO and OIO were also measured by long-path differential optical absorption spectroscopy (LP-DOAS). The simultaneous denuder and LP-DOAS I2 measurements were well correlated (R2=0.80) but the denuder method recorded much higher concentrations. This can be attributed to the fact that the in situ measurements were made near to macroalgal sources of I2 in the intertidal zone, whereas the LP-DOAS technique provides distance-averaged mixing ratios of an inhomogeneous distribution along the light-path. The observed mixing ratios of I2 at Mweenish Bay were significantly higher than that at Mace Head, which is consistent with differences in local algal biomass density and algal species composition. Above algal beds, levels of I2 were found to correlate inversely with tidal height and positively with the concentrations of O3 in the surrounding air, indicating a role for O3 in the production of I2 from macroalgae, as has been previously suggested from laboratory studies. However, measurements made ~150 m away from the algal beds showed a negative correlation between O3 and I2 during both day and night. We interpret these results to indicate that the released I2 can also lead to O3 destruction via the reaction of O3 with I atoms that are formed by the photolysis of I2 during the day and via the reaction of I2 with NO3 radicals at night. The results show that the concentrations of daytime IO are correlated with the mixing ratios of I2, and suggest that the local algae sources dominate the inorganic iodine chemistry at Mace Head and Mweenish Bay.


2012 ◽  
Vol 12 (22) ◽  
pp. 11179-11197 ◽  
Author(s):  
E. Peters ◽  
F. Wittrock ◽  
K. Großmann ◽  
U. Frieß ◽  
A. Richter ◽  
...  

Abstract. In October 2009, shipborne Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements were performed during the TransBrom campaign over the western Pacific Ocean (≈ 40° N to 20° S). Vertical tropospheric trace gas columns and profiles of nitrogen dioxide (NO2) and formaldehyde (HCHO) as well as stratospheric NO2 columns were retrieved in order to validate corresponding measurements from the GOME-2 and SCIAMACHY satellite instruments and to estimate tropospheric background concentrations of these trace gases. All instruments reproduced the same characteristic, latitude-dependent shape of stratospheric NO2. SCIAMACHY and GOME-2 data differ by about 1% from each other while yielding lower vertical columns than MAX-DOAS morning values as a consequence of measurement time and stratospheric NO2 diurnal cycle. Due to this diurnal cycle, an increase of 8.7 ± 0.5 × 1013 molec cm−2 h−1 of stratospheric NO2 was estimated from MAX-DOAS data at low latitudes during the day. Tropospheric NO2 was above the detection limit only in regions of higher anthropogenic impact (ship traffic, transport of pollution from land). A background column of 1.3 × 1014 molec cm−2 (or roughly 50 ppt boundary layer concentration) can be estimated as upper limit for the remote ocean, which is in agreement with GOME-2 monthly mean values. In the marine boundary layer close to the islands of Hokkaido and Honshu, up to 0.8 ppbv were retrieved close to the surface. Background HCHO concentrations over the remote ocean exhibit a diurnal cycle with maximum values (depending strongly on weather conditions) of 4 × 1015 molec cm−2 for the vertical column at noontime. Corresponding peak concentrations of up to 1.1 ppbv were retrieved in elevated altitudes (≈ 400 m) around noon while maximum concentrations in the evening are close to the ground. An agreement between MAX-DOAS and GOME-2 data was found for typical vertical columns of 3 × 1015 molec cm−2 over the remote ocean at the time of overpass.


2005 ◽  
Vol 5 (11) ◽  
pp. 2927-2934 ◽  
Author(s):  
L. J. Carpenter ◽  
D. J. Wevill ◽  
S. O'Doherty ◽  
G. Spain ◽  
P. G. Simmonds

Abstract. In situ atmospheric observations of bromoform (CHBr3) made over a 2.5 year period at Mace Head, Ireland from May 2001- Dec 2003, including during the NAMBLEX (North Atlantic Marine Boundary Layer Experiment) campaign, show broad maxima from spring until autumn and winter minima, with mixing ratios of 5.3+1.0 pptv (mid March - mid October) and 1.8+0.8 pptv (December-February). This indicates that, unlike CHCl3, which has a summer minimum and winter maximum at Mace Head, local biological sources of CHBr3 have a greater influence on the atmospheric data than photochemical decay during long-range transport. The emission sources are predominantly macroalgal, but we find evidence for a small terrestrial flux from peatland ecosystems, which so far has not been accounted for in the CHBr3 budget. Sharp increases in CHCl3 and CHBr3 concentrations and decreases in O3 concentrations occurred at night when the wind direction switched from an ocean- to a land-based sector (land breeze) and the wind speed dropped to below 5 ms-1. These observations infer a shallow atmospheric boundary layer with increased O3 deposition and concentration of local emissions of both CHCl3 and CHBr3. The ratio of ΔCHCl3/ΔCHBr3 varied strongly according to the prevailing wind direction; from 0.60+0.15 in south-easterly (100-170° and northerly (340-20°) air to 2.5+0.4 in north-easterly (40-70°) air. Of these land-sectors, the south-easterly air masses are likely to be strongly influenced by macroalgal beds along the coast and the emission ratios probably reflect those from seaweeds in addition to land sources. The north-easterly airmasses however had an immediate fetch inland, which locally is comprised of coastal peatland ecosystems (peat bogs and coastal conifer plantations), previously identified as being strong sources of atmospheric CHCl3 under these conditions. Although we cannot entirely rule out other local land or coastal sources, our observations also suggest peatland ecosystem emissions of CHBr3. We use correlations between CHCl3 and CHBr3 during the north-easterly land breeze events in conjunction with previous estimates of local wetland CHCl3 release to tentatively deduce a global wetland CHBr3 source of 20.4(0.4-948) Gg yr-1, which is approximately 7% of the total global source.


2005 ◽  
Vol 5 (3) ◽  
pp. 3491-3532 ◽  
Author(s):  
M. Bitter ◽  
S. M. Ball ◽  
I. M. Povey ◽  
R. L. Jones

Abstract. This paper describes a broadband cavity ringdown spectrometer and its deployment during the 2002 North Atlantic Marine Boundary Layer Experiment (NAMBLEX) to measure ambient concentrations of NO3, N2O5, I2 and OIO at the Mace Head Atmospheric Research Station, Co. Galway, Ireland. The effective absorption path lengths accessible with the spectrometer generally exceeded 10 km, enabling sensitive localised ''point'' measurements of atmospheric absorbers to be made adjacent to the other instruments monitoring chemically related species at the same site. For the majority of observations, the spectrometer was used in an open path configuration thereby avoiding surface losses of reactive species. A subset of observations targeted the N2O5 molecule by detecting the additional NO3 formed by the thermal dissociation of N2O5. In all cases the concentrations of the atmospheric absorbers were retrieved by fitting the differential structure in the broadband cavity ringdown spectra using a methodology adapted from long path differential optical absorption spectroscopy. The uncertainty of the retrieval depends crucially on the correct treatment and fitting of the absorption bands due to water vapour, a topic that is discussed in the context of analysing broadband cavity ringdown spectra. The quality of the measurements and the retrieval method are illustrated with representative spectra acquired during NAMBLEX in spectral regions around 660 nm (NO3 and N2O5) and 570 nm (I2 and OIO). Typical detection limits were 1 pptv for NO3 in an integration time of 100 s, 4 pptv for OIO and 20 pptv for I2 in an integration time of 10 min. Additionally, the concentrations of atmospheric water vapour and the aerosol optical extinction were retrieved in both spectral regions. A companion paper in this issue presents the time series of the measurements and discusses their significance for understanding the variability of short lived nitrogen and iodine compounds in the marine boundary layer.


2010 ◽  
Vol 10 (8) ◽  
pp. 3615-3627 ◽  
Author(s):  
C. D. Homan ◽  
C. M. Volk ◽  
A. C. Kuhn ◽  
A. Werner ◽  
J. Baehr ◽  
...  

Abstract. We present airborne in situ measurements made during the AMMA (African Monsoon Multidisciplinary Analysis)/SCOUT-O3 campaign between 31 July and 17 August 2006 on board the M55 Geophysica aircraft, based in Ouagadougou, Burkina Faso. CO2 and N2O were measured with the High Altitude Gas Analyzer (HAGAR), CO was measured with the Cryogenically Operated Laser Diode (COLD) instrument, and O3 with the Fast Ozone ANalyzer (FOZAN). We analyse the data obtained during five local flights to study the dominant transport processes controlling the tropical tropopause layer (TTL, here ~350–375 K) and lower stratosphere above West-Africa: deep convection up to the level of main convective outflow, overshooting of deep convection, and horizontal inmixing across the subtropical tropopause. Besides, we examine the morphology of the stratospheric subtropical barrier. Except for the flight of 13 August, distinct minima in CO2 mixing ratios indicate convective outflow of boundary layer air in the TTL. The CO2 profiles show that the level of main convective outflow was mostly located at potential temperatures between 350 and 360 K, and for 11 August reached up to 370 K. While the CO2 minima indicate quite significant convective influence, the O3 profiles suggest that the observed convective signatures were mostly not fresh, but of older origin (several days or more). When compared with the mean O3 profile measured during a previous campaign over Darwin in November 2005, the O3 minimum at the main convective outflow level was less pronounced over Ouagadougou. Furthermore O3 mixing ratios were much higher throughout the whole TTL and, unlike over Darwin, rarely showed low values observed in the regional boundary layer. Signatures of irreversible mixing following overshooting of convective air were scarce in the tracer data. Some small signatures indicative of this process were found in CO2 profiles between 390 and 410 K during the flights of 4 and 8 August, and in CO data at 410 K on 7 August. However, the absence of expected corresponding signatures in other tracer data makes this evidence inconclusive, and overall there is little indication from the observations that overshooting convection has a profound impact on gas-phase tracer TTL composition during AMMA. We find the amount of photochemically aged air isentropically mixed into the TTL across the subtropical tropopause to be not significant. Using the N2O observations we estimate the fraction of aged extratropical stratospheric air in the TTL to be 0.0±0.1 up to 370 K during the local flights. Above the TTL this fraction increases to 0.3±0.1 at 390 K. The subtropical barrier, as indicated by the slope of the correlation between N2O and O3 between 415 and 490 K, does not appear as a sharp border between the tropics and extratropics, but rather as a gradual transition region between 10° N and 25° N where isentropic mixing between these two regions may occur.


2018 ◽  
Vol 18 (20) ◽  
pp. 14787-14798
Author(s):  
Liang Feng ◽  
Paul I. Palmer ◽  
Robyn Butler ◽  
Stephen J. Andrews ◽  
Elliot L. Atlas ◽  
...  

Abstract. We infer surface fluxes of bromoform (CHBr3) and dibromoform (CH2Br2) from aircraft observations over the western Pacific using a tagged version of the GEOS-Chem global 3-D atmospheric chemistry model and a maximum a posteriori inverse model. Using GEOS-Chem (GC) as an intermediary, we find that the distribution of a priori ocean emissions of these gases are reasonably consistent with observed atmospheric mole fractions of CHBr3 (r=0.62) and CH2Br2 (r=0.38). These a priori emissions result in a positive model bias in CHBr3 peaking in the marine boundary layer, but reproduce observed values of CH2Br2 with no significant bias by virtue of its longer atmospheric lifetime. Using GEOS-Chem, we find that observed variations in atmospheric CHBr3 are determined equally by sources over the western Pacific and those outside the study region, but observed variations in CH2Br2 are determined mainly by sources outside the western Pacific. Numerical closed-loop experiments show that the spatial and temporal distribution of boundary layer aircraft data have the potential to substantially improve current knowledge of these fluxes, with improvements related to data density. Using the aircraft data, we estimate aggregated regional fluxes of 3.6±0.3×108 and 0.7±0.1×108 g month−1 for CHBr3 and CH2Br2 over 130–155∘E and 0–12∘ N, respectively, which represent reductions of 20 %–40 % of the prior inventories by Ordóñez et al. (2012) and substantial spatial deviations from different a priori inventories. We find no evidence to support a robust linear relationship between CHBr3 and CH2Br2 oceanic emissions, as used by previous studies. We find that over regions with dense observation coverage, our choice of a priori inventory does not significantly impact our reported a posteriori flux estimates.


Sign in / Sign up

Export Citation Format

Share Document