scholarly journals Organic and inorganic markers and stable C-, N-isotopic compositions of tropical coastal aerosols from megacity Mumbai: sources of organic aerosols and atmospheric processing

2013 ◽  
Vol 13 (9) ◽  
pp. 4667-4680 ◽  
Author(s):  
S. G. Aggarwal ◽  
K. Kawamura ◽  
G. S. Umarji ◽  
E. Tachibana ◽  
R. S. Patil ◽  
...  

Abstract. To better understand the sources of PM10 samples in Mumbai, India, aerosol chemical composition, i.e., total carbon (TC), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and inorganic ions were studied together with specific markers such as methanesulfonate (MSA), oxalic acid (C2), azelaic acid (C9), and levoglucosan. The results revealed that biofuel/biomass burning and fossil fuel combustion are the major sources of the Mumbai aerosols. Nitrogen-isotopic (δ15N) composition of aerosol total nitrogen, which ranged from 18.1 to 25.4‰, also suggests that biofuel/biomass burning is a predominate source in both the summer and winter seasons. Aerosol mass concentrations of major species increased 3–4 times in winter compared to summer, indicating enhanced emission from these sources in the winter season. Photochemical production tracers, C2 diacid and nssSO42−, do not show diurnal changes. Concentrations of C2 diacid and WSOC show a strong correlation (r2 = 0.95). In addition, WSOC to OC (or TC) ratios remain almost constant for daytime (0.37 ± 0.06 (0.28 ± 0.04)) and nighttime (0.38 ± 0.07 (0.28 ± 0.06)), suggesting that mixing of fresh secondary organic aerosols is not significant and the Mumbai aerosols are photochemically well processed. Concentrations of MSA and C9 diacid present a positive correlation (r2 = 0.75), indicating a marine influence on Mumbai aerosols in addition to local/regional influence. Backward air mass trajectory analyses further suggested that the Mumbai aerosols are largely influenced by long-range continental and regional transport. Stable C-isotopic ratios (δ13C) of TC ranged from −27.0 to −25.4‰, with slightly lower average (−26.5 ± 0.3‰) in summer than in winter (−25.9 ± 0.3‰). Positive correlation between WSOC/TC ratios and δ13C values suggested that the relative increment in 13C of wintertime TC may be caused by prolonged photochemical processing of organic aerosols in this season. This study suggests that in winter, the tropical aerosols are more aged due to longer residence time in the atmosphere than in summer aerosols. However, these conclusions are based on the analysis of a limited number of samples (n=25) and more information on this topic may be needed from other similar coastal sites in future.

2012 ◽  
Vol 12 (8) ◽  
pp. 20593-20630 ◽  
Author(s):  
S. G. Aggarwal ◽  
K. Kawamura ◽  
G. S. Umarji ◽  
E. Tachibana ◽  
R. S. Patil ◽  
...  

Abstract. To better understand the sources of PM10 samples from Mumbai, India, aerosol chemical compositions, i.e. total carbon (TC), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and inorganic ions were studied together with specific markers such as methanesulfonate (MSA), oxalic acid (C2), azelaic acid (C9), and levoglucosan. The results revealed that biofuel/biomass burning and fossil fuel combustion are the major sources of the Mumbai aerosols. Nitrogen-isotopic (δ15N) composition of aerosol total nitrogen, which ranged from 18.1 to 25.4‰, also suggest that biofuel/biomass burning is the dominant source in both summer and winter seasons. Aerosol mass concentrations of major species increased 3–4 times in winter compared to summer, indicating an enhanced emission from these sources in winter season. Photochemical production tracers, C2 diacid and nssSO42− do not show diurnal changes. Concentrations of C2 diacid and WSOC show a strong correlation (r2 = 0.95). In addition, WSOC to OC (or TC) ratios remain almost constant for day- (0.37 ± 0.06 (0.28 ± 0.04)) and nighttime (0.38 ± 0.07 (0.28 ± 0.06)), suggesting that mixing of fresh secondary organic aerosols is not significant rather the Mumbai aerosols are photochemically well processed. Concentrations of MSA and C9 diacid present a positive correlation (r2 = 0.75), indicating a marine influence on Mumbai aerosols in addition to local/regional influence. Backward air mass trajectory analyses further suggested that the Mumbai aerosols are largely influenced by long-range continental and regional transport. Stable C-isotopic ratios (δ13C) of TC ranged from −27.0 to −25.4‰ with slightly lower average (−26.5 ± 0.3‰) in summer than in winter (−25.9 ± 0.3‰). Positive correlation between WSOC/TC ratios and δ13C values suggested that the increment in δ13C of wintertime TC may be caused by prolonged photochemical processing of organic aerosols in this season. This study suggests that in winter, the tropical aerosols are more aged due to longer residence time in the atmosphere than in the summer aerosols.


2012 ◽  
Vol 12 (11) ◽  
pp. 28661-28703 ◽  
Author(s):  
S. L. Mkoma ◽  
K. Kawamura ◽  
P. Fu

Abstract. Atmospheric aerosol samples of PM2.5 and PM10 were collected at a rural site in Tanzania in 2011 during wet and dry seasons and they were analysed for carbonaceous components, levoglucosan and water-soluble inorganic ions. The mean mass concentrations of PM2.5 and PM10 were 28.2±6.4 μg m−3 and 47±8.2 μg m−3 in wet season, and 39.1±9.8 μg m−3 and 61.4±19.2 μg m−3 in dry season, respectively. Total carbon (TC) accounted for 16–19% of the PM2.5 mass and 13–15% of the PM10 mass. On average, 85.9 to 88.7% of TC in PM2.5 and 87.2 to 90.1% in PM10 was organic carbon (OC), of which 67–72% and 63% was found to be water-soluble organic carbon (WSOC) in PM2.5 and PM10, respectively. Water-soluble potassium (K+) and sulphate (SO42−) in PM2.5 and, sodium (Na+) and SO42− in PM10 were the dominant ionic species. We found, that concentrations of biomass burning tracers (levoglucosan and mannosan) well correlated with non-sea-salt-K+, WSOC and OC in the aerosols from Tanzania, East Africa. Mean contributions of levoglucosan to OC ranged between 3.9–4.2% for PM2.5 and 3.5–3.8% for PM10. This study demonstrates that emissions from biomass- and biofuel-burning activities followed by atmospheric photochemical processes mainly control the air quality in Tanzania.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 385 ◽  
Author(s):  
Luminiţa Mărmureanu ◽  
Jeni Vasilescu ◽  
Jay Slowik ◽  
André S. H. Prévôt ◽  
Cristina Antonia Marin ◽  
...  

Aerosols and organic source apportionment were characterized using data collected during two measurement campaigns. These campaigns were conducted during the summer and winter seasons at Măgurele, a site located southwest of Bucharest, the capital of Romania and one of the largest cities in southeastern Europe (raking seven in Europe based on population). The summer campaign was conducted between 7 June–18 July 2012, and the winter campaign from 14 January–6 February 2013. Approximately 50% of the organic fraction contribution to the total submicron particulate matter sampled by aerosol mass spectrometer was evidenced during both seasons. Submicronic organic aerosol sources were quantified using the positive matrix factorization approach. For warm (summer) and cold (winter) seasons, more than 50% from total organics was represented by oxidized factors. For the summer season, separate analyses were conducted on data influenced by urban and non-urban sources. The influence of pollution from Bucharest on the measurement site was observed in aerosol concentration and composition. The primary organic aerosols have different contribution percentage during summer, depending on their main origin. The influence of Bucharest, during summer, included cooking contribution of 13%. The periods with more regional influence were characterized by lower contribution from traffic and biomass burning in a total proportion of 28%. In winter, the influence of local non-traffic sources was dominant. For more than 99% of the measurements, the biomass burning indicator, f 60 , exceeded the background value, with residential heating being an important source in this area. Fossil fuel contribution was confirmed for one week during the winter campaign, when 14 C analysis of total and elemental carbon revealed the presence of 17% fossil contributions to total carbon. Mass spectrometry, 14 C and absorption data suggest biomass burning as the predominant primary source of organic aerosols for the winter season.


2015 ◽  
Vol 15 (3) ◽  
pp. 1299-1312 ◽  
Author(s):  
Y.-L. Zhang ◽  
R.-J. Huang ◽  
I. El Haddad ◽  
K.-F. Ho ◽  
J.-J. Cao ◽  
...  

Abstract. During winter 2013, extremely high concentrations (i.e., 4–20 times higher than the World Health Organization guideline) of PM2.5 (particulate matter with an aerodynamic diameter < 2.5 μm) mass concentrations (24 h samples) were found in four major cities in China including Xi'an, Beijing, Shanghai and Guangzhou. Statistical analysis of a combined data set from elemental carbon (EC), organic carbon (OC), 14C and biomass-burning marker measurements using Latin hypercube sampling allowed a quantitative source apportionment of carbonaceous aerosols. Based on 14C measurements of EC fractions (six samples each city), we found that fossil emissions from coal combustion and vehicle exhaust dominated EC with a mean contribution of 75 ± 8% across all sites. The remaining 25 ± 8% was exclusively attributed to biomass combustion, consistent with the measurements of biomass-burning markers such as anhydrosugars (levoglucosan and mannosan) and water-soluble potassium (K+). With a combination of the levoglucosan-to-mannosan and levoglucosan-to-K+ ratios, the major source of biomass burning in winter in China is suggested to be combustion of crop residues. The contribution of fossil sources to OC was highest in Beijing (58 ± 5%) and decreased from Shanghai (49 ± 2%) to Xi'an (38 ± 3%) and Guangzhou (35 ± 7%). Generally, a larger fraction of fossil OC was from secondary origins than primary sources for all sites. Non-fossil sources accounted on average for 55 ± 10 and 48 ± 9% of OC and total carbon (TC), respectively, which suggests that non-fossil emissions were very important contributors of urban carbonaceous aerosols in China. The primary biomass-burning emissions accounted for 40 ± 8, 48 ± 18, 53 ± 4 and 65 ± 26% of non-fossil OC for Xi'an, Beijing, Shanghai and Guangzhou, respectively. Other non-fossil sources excluding primary biomass burning were mainly attributed to formation of secondary organic carbon (SOC) from non-fossil precursors such as biomass-burning emissions. For each site, we also compared samples from moderately to heavily polluted days according to particulate matter mass. Despite a significant increase of the absolute mass concentrations of primary emissions from both fossil and non-fossil sources during the heavily polluted events, their relative contribution to TC was even decreased, whereas the portion of SOC was consistently increased at all sites. This observation indicates that SOC was an important fraction in the increment of carbonaceous aerosols during the haze episode in China.


2016 ◽  
Author(s):  
Yuzo Miyazaki ◽  
Sean Coburn ◽  
Kaori Ono ◽  
David T. Ho ◽  
R. Bradley Pierce ◽  
...  

Abstract. Stable carbon isotopic compositions of water-soluble organic carbon (WSOC) and organic molecular markers were measured to investigate the relative contributions of the sea-surface sources to the water-soluble fraction of submicron organic aerosols collected over the eastern equatorial Pacific during the Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated VOCs (TORERO)/KA-12-01 cruise. On average, the water-soluble organic fraction of the total carbon (TC) mass in submicron aerosols was ~ 30–35 % in the open oceans, whereas it was ~ 60 % in the coastal oceans. The average stable carbon isotope ratio of WSOC (δ13CWSOC) was −19.8 ± 2.0 ‰, which was systematically higher than that of TC (δ13CTC) (−21.8 ± 1.4 ‰). We found that in both coastal and open oceans, the δ13CWSOC was close to the typical values of δ13C for dissolved organic carbon (DOC), ranging from −22 ‰ to −20 ‰ in surface seawater of tropical Pacific oceans. This suggests an enrichment of marine biological products in WSOC aerosols in the study region regardless of the oceanic area. In particular, enhanced levels of WSOC and biogenic organic marker compounds together with high values of WSOC/TC (~ 60 %) and δ13CWSOC were observed over upwelling areas and phytoplankton blooms, which was attributed to planktonic tissues being more enriched in δ13C. The δ13C analysis estimated that on average, marine sources contribute ~ 90 ± 25 % of the aerosol carbon, indicating the predominance of marine-derived carbon in the submicron WSOC. This conclusion is supported by Lagrangian trajectory analysis, which suggests that the majority of the sampling points on the ship had been exposed to marine boundary layer air for more than 80 % of the time during the previous 7 days. The combined analysis of the δ13C and monosaccharides, such as glucose and fructose, indicated that DOC concentration was the major factor controlling the concentration levels of the submicron WSOC regardless of the oceanic areas over the study region.


2010 ◽  
Vol 10 (5) ◽  
pp. 12859-12906 ◽  
Author(s):  
L. L. Soto-García ◽  
M. O. Andreae ◽  
T. W. Andreae ◽  
P. Artaxo ◽  
W. Maenhaut ◽  
...  

Abstract. Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters ranging from 0.03 to 0.10 μm. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, ECa, and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BCe) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (Dp < 2.5 μm: average 59.8 μg m−3) were higher than coarse aerosols (Dp > 2.5 μm: 4.1 μg m−3). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC×1.8) plus BCe, comprised more than 90% to the total aerosol mass. Concentrations of ECa (estimated by thermal analysis with a correction for charring) and BCe (estimated by LTM) averaged 5.2±1.3 and 3.1±0.8 μg m−3, respectively. The determination of EC was improved by extracting water soluble organic material from the samples, which reduced the average light absorption Ångström exponent of particles in the size range of 0.1 to 1.0 μm from being greater than 2.0 to approximately 1.2. The size-resolved BCe measured by the LTM showed a clear maximum between 0.4 to 0.6 μm in diameter. The concentrations of OC and BCe varied diurnally during the dry period, and this variation is related to diurnal changes in boundary layer thickness and in fire frequency.


2011 ◽  
Vol 11 (9) ◽  
pp. 4425-4444 ◽  
Author(s):  
L. L. Soto-García ◽  
M. O. Andreae ◽  
T. W. Andreae ◽  
P. Artaxo ◽  
W. Maenhaut ◽  
...  

Abstract. Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (Dp) ranging from 0.03 to 0.10 μm. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, ECa, and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BCe) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (Dp<2.5 μm: average 59.8 μg m−3) were higher than coarse aerosols (Dp> 2.5 μm: 4.1 μg m−3). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC × 1.8) plus BCe, comprised more than 90% to the total aerosol mass. Concentrations of ECa (estimated by thermal analysis with a correction for charring) and BCe (estimated by LTM) averaged 5.2 ± 1.3 and 3.1 ± 0.8 μg m−3, respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption Ångström exponent of particles in the size range of 0.1 to 1.0 μm from >2.0 to approximately 1.2. The size-resolved BCe measured by the LTM showed a clear maximum between 0.4 and 0.6 μm in diameter. The concentrations of OC and BCe varied diurnally during the dry period, and this variation is related to diurnal changes in boundary layer thickness and in fire frequency.


2016 ◽  
Author(s):  
Ulrike Dusek ◽  
Regina Hitzenberger ◽  
Anne Kasper-Giebl ◽  
Magdalena Kistler ◽  
Harro A. J. Meijer ◽  
...  

Abstract. We measured the radioactive carbon isotope 14C (radiocarbon) in various fractions of the carbonaceous aerosol sampled between February 2011 and March 2012 at the Cesar observatory in the Netherlands. Based on the radiocarbon content in total carbon (TC), organic carbon (OC), water insoluble organic carbon (WIOC), and elemental carbon (EC), we estimated the contribution of major sources to the carbonaceous aerosol. The main source categories were fossil fuel combustion, biomass burning and other contemporary carbon, which is mainly biogenic secondary organic aerosol material (SOA). A clear seasonal variation is seen in EC from biomass burning (ECBB), with lowest values in summer and highest values in winter, but ECBB is a minor fraction of EC in all seasons. WIOC from contemporary sources is highly correlated with ECBB, indicating that biomass burning is the dominant source of contemporary WIOC. This suggests that most biogenic SOA is water-soluble and that water insoluble carbon stems mainly from primary sources. Seasonal variations in other carbon fractions are less clear and hardly distinguishable from variations related to air mass history. Air masses originating from the ocean sector presumably contain little carbonaceous aerosol from outside the Netherlands, and during these conditions measured carbon concentrations reflect regional sources. In these situations absolute TC concentrations are usually rather low, around 1.5 μg m−3 and ECBB is always very low (~ 0.05 μg m−3), even in winter, indicating that biomass burning is not a strong source of carbonaceous aerosol in the Netherlands. In continental air masses, which usually arrive from the East or South and have spent several days over land, TC concentrations are on average by a factor of 3 higher. ECBB increases more strongly than TC to 0.2 μg m−3. Fossil EC and fossil WIOC, which are indicative of primary emissions, show a more moderate increase by a factor of 2.5 on average. An interesting case is fossil water soluble organic carbon (WSOC, calculated as OC-WIOC), which can be regarded as a proxy for SOA from fossil precursors. Fossil WSOC has low concentrations when regional sources are sampled and increases by more than a factor of 5 in continental air masses. A longer residence time of air masses over land seems to result in increased SOA concentrations from fossil origin.


2005 ◽  
Vol 5 (5) ◽  
pp. 8421-8471 ◽  
Author(s):  
Q. Zhang ◽  
D. R. Worsnop ◽  
M. R. Canagaratna ◽  
J.-L. Jimenez

Abstract. A recently developed algorithm (Zhang et al., 2005) has been applied to deconvolve the mass spectra of organic aerosols acquired with the Aerosol Mass Spectrometer (AMS) in Pittsburgh during September 2002. The results are used here to characterize the mass concentrations, size distributions, and mass spectra of hydrocarbon-like and oxygenated organic aerosol (HOA and OOA, respectively). HOA accounts for 34% of the measured organic aerosol mass and OOA accounts for 66%. The mass concentrations of HOA demonstrate a prominent diurnal profile that peaks in the morning during the rush hour and decreases with the rise of the boundary layer. The diurnal profile of OOA is relatively flat and resembles those of SO42− and NH4+. The size distribution of HOA shows a distinct ultrafine mode that is commonly associated with fresh emissions while OOA is generally concentrated in the accumulation mode and appears to be mostly internally mixed with the inorganic ions, such as SO42− and NH4+. These observations suggest that HOA is likely primary aerosol from local, combustion-related emissions and that OOA is secondary organic aerosol (SOA) influenced by regional contributions. There is strong evidence of the direct correspondence of OOA to SOA during an intense new particle formation and growth event, when condensational growth of OOA was observed. The mass spectrum of OOA of this new particle formation event is very similar to the OOA spectrum of the entire study, which strongly suggests that most OOA during this study is SOA. O3 appears to be a poor indicator for SOA concentration while SO42− is a relatively good surrogate for this dataset. Since the diurnal averages of HOA tightly track those of CO during day time, oxidation/aging of HOA appears to be very small on the time scale of several hours. Based on extracted mass spectra and the likely elemental compositions of major m/z's, the organic mass to organic carbon ratios (OM:OC) of HOA and OOA are estimated at 1.2 and 2.2 μg/μg C, respectively, leading to an average OM:OC ratio of 1.8 for submicron OA in Pittsburgh during September. The C:O ratio of OOA is estimated at 1:0.8. The carbon contents in HOA and OOA calculated accordingly correlate well to primary and secondary organic carbon, respectively, estimated by the OC/EC tracer technique (assuming POC-to-EC ratio=1). In addition, the total carbon concentrations calculated from the AMS data agree well with those measured by the Sunset Laboratory Carbon analyzer (r2=0.87; slope=1.01±0.11).


Sign in / Sign up

Export Citation Format

Share Document