scholarly journals Statistical exploration of gaseous elemental mercury (GEM) measured at Cape Point from 2007 to 2011

2015 ◽  
Vol 15 (18) ◽  
pp. 10271-10280 ◽  
Author(s):  
A. D. Venter ◽  
J. P. Beukes ◽  
P. G. van Zyl ◽  
E.-G. Brunke ◽  
C. Labuschagne ◽  
...  

Abstract. The authors evaluated continuous high-resolution gaseous elemental mercury (GEM) data from the Cape Point Global Atmosphere Watch (CPT GAW) station with different statistical analysis techniques. GEM data were evaluated by cluster analysis and the results indicated that two clusters, separated at 0.904 ng m−3, existed. The air mass history for the two-cluster solution was investigated by means of back-trajectory analysis. The air mass back-trajectory net result showed lower GEM concentrations originating from the sparsely populated semi-arid interior of South Africa and the marine environment, whereas higher GEM concentrations originated predominately along the coast of South Africa that most likely coincide with trade routes and industrial activities in urban areas along the coast. Considering the net result from the air mass back-trajectories, it is evident that not all low GEM concentrations are from marine origin, and similarly, not all high GEM concentrations have a terrestrial origin. Equations were developed by means of multi-linear regression (MLR) analysis that allowed for the estimation and/or prediction of atmospheric GEM concentrations from other atmospheric parameters measured at the CPT GAW station. These equations also provided some insight into the relation and interaction of GEM with other atmospheric parameters. Both measured and MLR calculated data confirm a decline in GEM concentrations at CPT GAW over the period evaluated.

2015 ◽  
Vol 15 (3) ◽  
pp. 4025-4053
Author(s):  
A. D. Venter ◽  
J. P. Beukes ◽  
P. G. van Zyl ◽  
E.-G. Brunke ◽  
C. Labuschagne ◽  
...  

Abstract. The authors evaluated continuous high resolution gaseous elemental mercury (GEM) data from the Cape Point Global Atmosphere Watch (CPT GAW) station with different statistical analysis techniques. GEM data was evaluated by cluster analysis and the results indicated that two clusters, separated at 0.904 ng m−3, existed. The air mass history for the two-cluster solution was investigated by means of back-trajectory analysis. The air mass back-trajectory net result showed lower GEM concentrations originating from the sparsely populated semi-arid interior of SA and the marine environment, whereas higher GEM concentrations originated predominately along the coast of SA that most likely coincide with trade routes and industrial activities in urban areas along the coast. Considering the net result from the air mass back-trajectories, it is evident that not all low GEM concentrations are from marine origin, and similarly, not all high GEM concentrations have a terrestrial origin. Equations were developed by means of multi-linear regression (MLR) analysis that allowed for the estimation/prediction of atmospheric GEM concentrations from other atmospheric parameters measured at the CPT GAW station. These equations also provided some insight into the relation and interaction of GEM with other atmospheric parameters. Both measured and MLR calculated data confirm a decline in GEM concentrations at CPT GAW over the period evaluated.


2010 ◽  
Vol 7 (6) ◽  
pp. 537 ◽  
Author(s):  
Anne L. Soerensen ◽  
Henrik Skov ◽  
Matthew S. Johnson ◽  
Marianne Glasius

Environmental context Mercury is a neurotoxin that bioaccumulates in the aquatic food web. Atmospheric emissions from urban areas close to the coast could cause increased local mercury deposition to the ocean. Our study adds important new data to the current limited knowledge on atmospheric mercury emissions and dynamics in coastal urban areas. Abstract Approximately 50% of primary atmospheric mercury emissions are anthropogenic, resulting from e.g. emission hotspots in urban areas. Emissions from urban areas close to the coast are of interest because they could increase deposition loads to nearby coastal waters as well as contribute to long range transport of mercury. We present results from measurements of gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) in 15 coastal cities and their surrounding marine boundary layer (MBL). An increase of 15–90% in GEM concentration in coastal urban areas was observed compared with the remote MBL. Strong RGM enhancements were only found in two cities. In urban areas with statistically significant GEM/CO enhancement ratios, slopes between 0.0020 and 0.0087 ng m–3 ppb–1 were observed, which is consistent with other observations of anthropogenic enhancement. The emission ratios were used to estimate GEM emissions from the areas. A closer examination of data from Sydney (Australia), the coast of Chile, and Valparaiso region (Chile) in the southern hemisphere, is presented.


Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 362 ◽  
Author(s):  
Kohji Marumoto ◽  
Noriyuki Suzuki ◽  
Yasuyuki Shibata ◽  
Akinori Takeuchi ◽  
Akinori Takami ◽  
...  

The concentrations of atmospheric gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particle-bound mercury (particles with diameter smaller than 2.5 μm; PBM2.5) were continuously observed for a period of over 10 years at Cape Hedo, located on the north edge of Okinawa Island on the border of the East China Sea and the Pacific Ocean. Regional or global scale mercury (Hg) pollution affects their concentrations because no local stationary emission sources of Hg exist near the observation site. Their concentrations were lower than those at urban and suburban cities, as well as remote sites in East Asia, but were slightly higher than the background concentrations in the Northern Hemisphere. The GEM concentrations exhibited no diurnal variations and only weak seasonal variations, whereby concentrations were lower in the summer (June–August). An annual decreasing trend for GEM concentrations was observed between 2008 and 2018 at a rate of −0.0382 ± 0.0065 ng m−3 year−1 (−2.1% ± 0.36% year−1) that was the same as those in Europe and North America. Seasonal trend analysis based on daily median data at Cape Hedo showed significantly decreasing trends for all months. However, weaker decreasing trends were observed during the cold season from January to May, when air masses are easily transported from the Asian continent by westerlies and northwestern monsoons. Some GEM, GOM, and PBM2.5 pollution events were observed more frequently during the cold season. Back trajectory analysis showed that almost all these events occurred due to the substances transported from the Asian continent. These facts suggested that the decreasing trend observed at Cape Hedo was influenced by the global decreasing GEM trend, but the rates during the cold season were restrained by regional Asian outflows. On the other hand, GOM concentrations were moderately controlled by photochemical production in summer. Moreover, both GOM and PBM2.5 concentrations largely varied during the cold season due to the influence of regional transport rather than the trend of atmospheric Hg on a global scale.


2011 ◽  
Vol 11 (2) ◽  
pp. 4447-4485 ◽  
Author(s):  
X. L. Pan ◽  
Y. Kanaya ◽  
Z. F. Wang ◽  
Y. Liu ◽  
P. Pochanart ◽  
...  

Abstract. Understanding the relationship between black carbon (BC) and carbon monoxide (CO) will help improve BC emission inventories and the evaluation of global/regional climate forcing effects. In the present work, the BC (PM1) and CO mixing ratio was continuously measured at a~high-altitude background station on the summit of Mt Huangshan between 2006 and 2009. Annual mean BC concentration was 654.6 ± 633.4 ng m−3 with maxima in spring and autumn, when biomass was burned over a large area in Eastern China. The yearly averaged CO concentration was 446.4 ± 167.6 ppbv, and the increase in the CO concentration was greatest in the cold season, implying that the large-scale domestic coal/biofuel combustion for heating has an effect. The BC–CO relationship was found to have different seasonal features but strong positive correlation (R > 0.8). Back trajectory cluster analysis showed that the ΔBC/ΔCO ratio of plumes from the Yangtze River Delta region was 6.58 ± 0.96 ng m−3 ppbv−1, which is consistent with result from INTEX-B emission inventory. The ΔBC/ΔCO ratios for air masses from Northern, Central Eastern and Southern China were 5.2 ± 0.63, 5.65 ± 0.58 and 5.21 ± 0.93 ng m−3 ppbv−1, respectively. Over the whole observation period, the ΔBC/ΔCO ratio had unimodal diurnal variations and had a maximum during the day (09:00–17:00 LST) and minimum at night (21:00–04:00 LST) in spring, summer, autumn and winter, indicating the effects of the intrusion of clean air mass from the high troposphere. The case study combined with measurements of urban PM10 concentrations and satellite observations demonstrated that the ΔBC/ΔCO ratio for a plume of burning biomass was 12.4 ng m−3 ppbv−1 and that for urban plumes in Eastern China was 5.3 ± 0.53 ng m−3 ppbv−1. Transportation and industry were deemed as controlling factors of the BC–CO relationship and major contributions to atmospheric BC and CO loadings in urban areas. The loss of BC during transportation was also investigated on the basis of the ΔBC/ΔCO–RH relationship along air mass pathways, and the results showed that 30–50% BC was lost when air mass traveled under higher RH conditions (>60%) for 2 days.


2010 ◽  
Vol 10 (5) ◽  
pp. 2425-2437 ◽  
Author(s):  
X. W. Fu ◽  
X. Feng ◽  
Z. Q. Dong ◽  
R. S. Yin ◽  
J. X. Wang ◽  
...  

Abstract. China is regarded as the largest contributor of mercury (Hg) to the global atmospheric Hg budget. However, concentration levels and depositions of atmospheric Hg in China are poorly known. Continuous measurements of atmospheric gaseous elemental mercury (GEM) were carried out from May 2008 to May 2009 at the summit of Mt. Leigong in south China. Simultaneously, deposition fluxes of THg and MeHg in precipitation, throughfall and litterfall were also studied. Atmospheric GEM concentrations averaged 2.80±1.51 ng m−3, which was highly elevated compared to global background values but much lower than semi-rural and industrial/urban areas in China. Sources identification indicates that both regional industrial emissions and long range transport of Hg from central, south and southwest China were corresponded to the elevated GEM level. Seasonal and diurnal variations of GEM were observed, which reflected variations in source intensity, deposition processes and meteorological factors. Precipitation and throughfall deposition fluxes of THg and MeHg in Mt. Leigong were comparable or lower compared to those reported in Europe and North America, whereas litterfall deposition fluxes of THg and MeHg were higher compared to Europe and North America. This highlights the importance of vegetation to Hg atmospheric cycling. In th remote forest ecosystem of China, deposition of GEM via uptake of foliage followed by litterfall was very important for the depletion of atmospheric Hg. Elevated GEM level in ambient air may accelerate the foliar uptake of Hg through air which may partly explain the elevated litterfall deposition fluxes of Hg observed in Mt. Leigong.


2016 ◽  
Vol 16 (21) ◽  
pp. 13379-13387 ◽  
Author(s):  
Ingvar Wängberg ◽  
Michelle G. Nerentorp Mastromonaco ◽  
John Munthe ◽  
Katarina Gårdfeldt

Abstract. Within the EU-funded project, Global Mercury Observation System (GMOS) airborne mercury has been monitored at the background Råö measurement site on the western coast of Sweden from mid-May 2012 to the beginning of July 2013 and from the beginning of February 2014 to the end of May 2015. The following mercury species/fractions were measured: gaseous elemental mercury (GEM), particulate bound mercury (PBM) and gaseous oxidised mercury (GOM) using the Tekran measurement system. The mercury concentrations measured at the Råö site were found to be low in comparison to other, comparable, European measurement sites. A back-trajectory analysis to study the origin of air masses reaching the Råö site was performed. Due to the remote location of the Råö measurement station it receives background air about 60 % of the time. However, elevated mercury concentrations arriving with air masses coming from the south-east are noticeable. GEM and PBM concentrations show a clear annual variation with the highest values occurring during winter, whereas the highest concentrations of GOM were obtained in spring and summer. An evaluation of the diurnal pattern of GOM, with peak concentrations at midday or in the early afternoon, which often is observed at remote places, shows that it is likely to be driven by local meteorology in a similar way to ozone. Evidence that a significant part of the GOM measured at the Råö site has been formed in free tropospheric air is presented.


2020 ◽  
Author(s):  
Henrik Skov ◽  
Jens Hjorth ◽  
Claus Nordstrøm ◽  
Bjarne Jensen ◽  
Christel Christoffersen ◽  
...  

Abstract. Mercury is ubiquitous in the atmosphere and atmospheric transport is an important source for this element in the Arctic. Measurements of gaseous elemental mercury (GEM) have been carried out at the Villum Research Station (Villum) at Station Nord, situated in north Greenland. The measurements cover the period 1999–2017 with a gap in the data for the period 2003–2008 (for a total of 11 years). The measurements were compared with model results from the Danish Eulerian Hemispheric Model (DEHM) model that describes the contribution from direct anthropogenic transport, marine emission and general background concentration. The percentage of time spent over different surfaces was calculated by back-trajectory analysis and the reaction kinetics was determined by comparison with ozone. The GEM measurements were analysed for trends, both seasonal and annually. The only significant trend found was a negative one for the winter months. Comparison of the measurements to simulations using the Danish Eulerian Hemispheric Model (DEHM) indicated that direct transport of anthropogenic emissions of mercury accounts for between 14 and 17 % of the measured mercury. Analysis of the kinetics of the observed Atmospheric Mercury Depletion Events (AMDEs) confirms the results of a previous study at Villum of the competing reactions of GEM and ozone with Br, which suggests a lifetime of GEM on the order of a month. However, a GEM lifetime of 12 months gave the best agreement between model and measurements. The chemical lifetime is shorter and thus the apparent lifetime appears to be the result of deposition followed by reduction and reemission; for this reason the term relaxation time is preferred to lifetime for GEM. The relaxation time for GEM causes a delay between emission reductions and the effect on actual concentrations. No annual trend was found for the measured concentrations of GEM over the measurement period despite emission reductions. This is interesting and together with low direct transport of GEM to Villum, as found by the DEHM model, it shows that the dynamics of GEM is very complex. Therefore in the coming years, intensive measurement networks is highly needed to describe the global distribution of mercury in the environment as the use of models to predict future levels will still be highly uncertain. The situation is increasingly complex due to global change that most likely will change the transport patterns of mercury not only in the atmosphere but also between matrixes.


2021 ◽  
Author(s):  
Elaine Cairns

This study was carried out to compare the levels of mercury species, i.e., elemental mercury (Hg°) and methyl mercury (MeHg), in indoor and outdoor air in urban areas in Canada. Offices, laboratories for undergraduate studies, and laboratories for research, in a public building located in the downtown core of the city of Toronto, were selected. Hg° was measured using an automated mercury vapour analyzer. MeHg in the air was collected using a carbotrap, and the trapped MeHg was thermally desorbed and analyzed using a CVAFS. The results showed that both indoor MeHg and Hg° levels were related to location function and air circulation. Outdoor MeHg levels were significantly elevated, ranging between 21 and 41% of total mercury (THg) levels, compared to those reported from previous studies. Outdoor Hg° fluctuations were not found to be significantly related to temperature or sunlight exposure, and outdoor MeHg levels were connected to soil and vegetation abundance. Average indoor Hg° levels were found to be between 1.4 and 15 times higher than outdoor levels, whereas MeHg indoor levels were not consistently higher than outdoor levels. Although the mercury concentrations in the indoor environment are still lower than the safety standard for Hg° and organic mercury, they are comparable to those observed near point sources. Thus, indoor air can be a source of mercury to the atmosphere.


2016 ◽  
Author(s):  
Lynwill G. Martin ◽  
Casper Labuschagne ◽  
Ernst-Günther Brunke ◽  
Andreas Weigelt ◽  
Ralf Ebinghaus ◽  
...  

Abstract. Long-term measurements of gaseous elemental mercury (GEM) concentrations at Cape Point, South Africa, reveal a downward trend between September 1995 and December 2005 and an upward one since March 2007 until June 2015 implying a change in trend sign between 2004 and 2007. The trend change is qualitatively consistent with the trend changes in GEM concentrations observed at Mace Head, Ireland, and in mercury wet deposition over North America suggesting a change in worldwide mercury emissions. Seasonally resolved trends suggest a modulation of the overall trend by regional processes. The trends in absolute terms (downward in 1995–2004 and upward in 2007–2015) are the highest in austral spring (SON) coinciding with the peak in emissions from biomass burning in South America and southern Africa. The influence of trends in biomass burning is further supported by a biennial variation in GEM concentration found here and an ENSO signature in GEM concentrations reported recently.


Sign in / Sign up

Export Citation Format

Share Document