scholarly journals On the reversibility of transitions between closed and open cellular convection

2015 ◽  
Vol 15 (13) ◽  
pp. 7351-7367 ◽  
Author(s):  
G. Feingold ◽  
I. Koren ◽  
T. Yamaguchi ◽  
J. Kazil

Abstract. The two-way transition between closed and open cellular convection is addressed in an idealized cloud-resolving modeling framework. A series of cloud-resolving simulations shows that the transition between closed and open cellular states is asymmetrical and characterized by a rapid ("runaway") transition from the closed- to the open-cell state but slower recovery to the closed-cell state. Given that precipitation initiates the closed–open cell transition and that the recovery requires a suppression of the precipitation, we apply an ad hoc time-varying drop concentration to initiate and suppress precipitation. We show that the asymmetry in the two-way transition occurs even for very rapid drop concentration replenishment. The primary barrier to recovery is the loss in turbulence kinetic energy (TKE) associated with the loss in cloud water (and associated radiative cooling) and the vertical stratification of the boundary layer during the open-cell period. In transitioning from the open to the closed state, the system faces the task of replenishing cloud water fast enough to counter precipitation losses, such that it can generate radiative cooling and TKE. It is hampered by a stable layer below cloud base that has to be overcome before water vapor can be transported more efficiently into the cloud layer. Recovery to the closed-cell state is slower when radiative cooling is inefficient such as in the presence of free tropospheric clouds or after sunrise, when it is hampered by the absorption of shortwave radiation. Tests suggest that recovery to the closed-cell state is faster when the drizzle is smaller in amount and of shorter duration, i.e., when the precipitation causes less boundary layer stratification. Cloud-resolving model results on recovery rates are supported by simulations with a simple predator–prey dynamical system analogue. It is suggested that the observed closing of open cells by ship effluent likely occurs when aerosol intrusions are large, when contact comes prior to the heaviest drizzle in the early morning hours, and when the free troposphere is cloud free.

2015 ◽  
Vol 15 (4) ◽  
pp. 5553-5588 ◽  
Author(s):  
G. Feingold ◽  
I. Koren ◽  
T. Yamaguchi ◽  
J. Kazil

Abstract. The two-way transition between closed and open cellular convection is addressed in an idealized cloud resolving modeling framework. A series of cloud resolving simulations shows that the transition between closed and open cellular states is asymmetrical, and characterized by a rapid ("runaway") transition from the closed- to the open-cell state, but slower recovery to the closed-cell state. Given that precipitation initiates the closed-open cell transition, and that the recovery requires a suppression of the precipitation, we apply an ad hoc time-varying drop concentration to initiate and suppress precipitation. We show that the asymmetry in the two-way transition occurs even for very rapid drop concentration replenishment. The primary barrier to recovery is the loss in turbulence kinetic energy (TKE) associated with the loss in cloud water (and associated radiative cooling), and the stabilization of the boundary layer during the open-cell period. In transitioning from the open to the closed state, the system faces the Sisyphusian task of replenishing cloud water fast enough to counter precipitation losses, such that it can generate radiative cooling and TKE. Recovery to the closed cell state is slower when radiative cooling is inefficient such as in the presence of free tropospheric clouds, or after sunrise, when it is hampered by the absorption of shortwave radiation. Tests suggest that a faster return to the closed-cell state requires that the drop concentration recovery be accompanied by significant dynamical forcing, e.g., via an increase in surface latent and sensible heat fluxes. This is supported by simulations with a simple predator-prey dynamical system analogue. It is suggested that the observed closing of open cells by ship effluent likely occurs when aerosol intrusions are large, when contact comes prior to the heaviest drizzle in the early morning hours, and when the free troposphere is cloud-free.


2014 ◽  
Vol 14 (1) ◽  
pp. 61-79 ◽  
Author(s):  
J. Kazil ◽  
G. Feingold ◽  
H. Wang ◽  
T. Yamaguchi

Abstract. The interaction between marine boundary layer cellular cloudiness and surface fluxes of sensible and latent heat is investigated. The investigation focuses on the non-precipitating closed-cell state and the precipitating open-cell state at low geostrophic wind speed. The Advanced Research WRF (Weather Research and Forecasting) model is used to conduct cloud system-resolving simulations with interactive surface fluxes of sensible heat, latent heat, and of sea salt aerosol, and with a detailed representation of the interaction between aerosol particles and clouds. The mechanisms responsible for the temporal evolution and spatial distribution of the surface heat fluxes in the closed- and open-cell state are investigated and explained. It is found that the closed-cell state imposes its horizontal spatial structure on surface air temperature and water vapor, and, to a lesser degree, on the surface sensible and latent heat flux. The responsible mechanism is the entrainment of dry, free tropospheric air into the boundary layer. The open-cell state is associated with oscillations in surface air temperature, water vapor, and in the surface fluxes of sensible heat, latent heat, and of sea salt aerosol. Here, the responsible mechanism is the periodic formation of clouds, rain, and of cold and moist pools with elevated wind speed. Open-cell cloud formation, cloud optical depth and liquid water path, and cloud and rain water path are identified as good predictors of the horizontal spatial structure of surface air temperature and sensible heat flux, but not of surface water vapor and latent heat flux. It is shown that the open-cell state creates conditions conducive to its maintenance by enhancing the surface sensible heat flux. The open-cell state also enhances the sea salt flux relative to the closed-cell state. While the open-cell state under consideration is not depleted in aerosol and is insensitive to variations in sea salt fluxes, in aerosol-depleted conditions, the enhancement of the sea salt flux may replenish the aerosol needed for cloud formation and hence contribute to the maintenance of the open-cell state. Spatial homogenization of the surface fluxes is found to have only a small effect on cloud properties in the investigated cases.


2009 ◽  
Vol 137 (3) ◽  
pp. 1083-1110 ◽  
Author(s):  
Andrew S. Ackerman ◽  
Margreet C. vanZanten ◽  
Bjorn Stevens ◽  
Verica Savic-Jovcic ◽  
Christopher S. Bretherton ◽  
...  

Abstract Cloud water sedimentation and drizzle in a stratocumulus-topped boundary layer are the focus of an intercomparison of large-eddy simulations. The context is an idealized case study of nocturnal stratocumulus under a dry inversion, with embedded pockets of heavily drizzling open cellular convection. Results from 11 groups are used. Two models resolve the size distributions of cloud particles, and the others parameterize cloud water sedimentation and drizzle. For the ensemble of simulations with drizzle and cloud water sedimentation, the mean liquid water path (LWP) is remarkably steady and consistent with the measurements, the mean entrainment rate is at the low end of the measured range, and the ensemble-average maximum vertical wind variance is roughly half that measured. On average, precipitation at the surface and at cloud base is smaller, and the rate of precipitation evaporation greater, than measured. Including drizzle in the simulations reduces convective intensity, increases boundary layer stratification, and decreases LWP for nearly all models. Including cloud water sedimentation substantially decreases entrainment, decreases convective intensity, and increases LWP for most models. In nearly all cases, LWP responds more strongly to cloud water sedimentation than to drizzle. The omission of cloud water sedimentation in simulations is strongly discouraged, regardless of whether or not precipitation is present below cloud base.


2021 ◽  
Author(s):  
Michael P. Jensen ◽  
Virendra P. Ghate ◽  
Dié Wang ◽  
Diana K. Apoznanski ◽  
Mary J. Bartholomew ◽  
...  

Abstract. Extensive regions of marine boundary layer cloud impact the radiative balance through their significant shortwave albedo while having little impact on outgoing longwave radiation. Despite this importance, these cloud systems remain poorly represented in large-scale models due to difficulty in representing the processes that drive their lifecycle and coverage. In particular, the mesoscale organization, and cellular structure of marine boundary clouds has important implications for the subsequent cloud feedbacks. In this study, we use long-term (2013–2018) observations from the Atmospheric Radiation Measurement (ARM) Facility's Eastern North Atlantic (ENA) site on Graciosa Island, Azores, Portugal to identify cloud cases with open- or closed-cellular organization. More than 500 hours of each organization type are identified. The ARM observations are combined with reanalysis and satellite products to quantify the cloud, precipitation, aerosol, thermodynamic and large-scale synoptic characteristics associated with these cloud types. Our analysis shows that both cloud organization populations occur during similar sea surface temperature conditions, but the open-cell cases are distinguished by stronger cold-air advection and large-scale subsidence compared to the closed-cell cases, consistent with their formation during cold-air outbreaks. We also find that the open-cell cases were associated with deeper boundary layers, stronger low-level winds, and higher-rain rates compared to their closed-cell counterparts. Finally, raindrops with diameters larger than one millimeter were routinely recorded at the surface during both populations, with a higher number of large drops during the open-cellular cases. The similarities and differences noted herein provide important insights into the environmental and cloud characteristics during varying marine boundary layer cloud mesoscale organization and will be useful for the evaluation of model simulations for ENA marine clouds.


2020 ◽  
Vol 13 (3) ◽  
pp. 1485-1499 ◽  
Author(s):  
Maria P. Cadeddu ◽  
Virendra P. Ghate ◽  
Mario Mech

Abstract. The partition of cloud and drizzle water path in precipitating clouds plays a key role in determining the cloud lifetime and its evolution. A technique to quantify cloud and drizzle water path by combining measurements from a three-channel microwave radiometer (23.8, 30, and 90 GHz) with those from a vertically pointing Doppler cloud radar and a ceilometer is presented. The technique is showcased using 1 d of observations to derive precipitable water vapor, liquid water path, cloud water path, drizzle water path below the cloud base, and drizzle water path above the cloud base in precipitating stratocumulus clouds. The resulting cloud and drizzle water path within the cloud are in good qualitative agreement with the information extracted from the radar Doppler spectra. The technique is then applied to 10 d each of precipitating closed and open cellular marine stratocumuli. In the closed-cell systems only ∼20 % of the available drizzle in the cloud falls below the cloud base, compared to ∼40 % in the open-cell systems. In closed-cell systems precipitation is associated with radiative cooling at the cloud top <-100Wm-2 and a liquid water path >200 g m−2. However, drizzle in the cloud begins to exist at weak radiative cooling and liquid water path >∼150 g m−2. Our results collectively demonstrate that neglecting scattering effects for frequencies at and above 90 GHz leads to overestimation of the total liquid water path of about 10 %–15 %, while their inclusion paves the path for retrieving drizzle properties within the cloud.


2021 ◽  
Vol 21 (19) ◽  
pp. 14557-14571
Author(s):  
Michael P. Jensen ◽  
Virendra P. Ghate ◽  
Dié Wang ◽  
Diana K. Apoznanski ◽  
Mary J. Bartholomew ◽  
...  

Abstract. Extensive regions of marine boundary layer cloud impact the radiative balance through their significant shortwave albedo while having little impact on outgoing longwave radiation. Despite this importance, these cloud systems remain poorly represented in large-scale models due to difficulty in representing the processes that drive their life cycle and coverage. In particular, the mesoscale organization and cellular structure of marine boundary clouds have important implications for the subsequent cloud feedbacks. In this study, we use long-term (2013–2018) observations from the Atmospheric Radiation Measurement (ARM) Facility's Eastern North Atlantic (ENA) site on Graciosa Island, Azores, Portugal, to identify cloud cases with open- or closed-cellular organization. More than 500 h of each organization type are identified. The ARM observations are combined with reanalysis and satellite products to quantify the cloud, precipitation, aerosol, thermodynamic, and large-scale synoptic characteristics associated with these cloud types. Our analysis shows that both cloud organization populations occur during similar sea surface temperature conditions, but the open-cell cases are distinguished by stronger cold-air advection and large-scale subsidence compared to the closed-cell cases, consistent with their formation during cold-air outbreaks. We also find that the open-cell cases were associated with deeper boundary layers, stronger low-level winds, and higher rain rates compared to their closed-cell counterparts. Finally, raindrops with diameters larger than 1 mm were routinely recorded at the surface during both populations, with a higher number of large drops during the open-cellular cases. The similarities and differences noted herein provide important insights into the environmental and cloud characteristics during varying marine boundary layer cloud mesoscale organization and will be useful for the evaluation of model simulations for ENA marine clouds.


2020 ◽  
Vol 12 (9) ◽  
pp. 1533 ◽  
Author(s):  
Tao Huang ◽  
Steve Hung-lam Yim ◽  
Yuanjian Yang ◽  
Olivia Shuk-ming Lee ◽  
David Hok-yin Lam ◽  
...  

Turbulent mixing is critical in affecting urban climate and air pollution. Nevertheless, our understanding of it, especially in a cloud-topped boundary layer (CTBL), remains limited. High-temporal resolution observations provide sufficient information of vertical velocity profiles, which is essential for turbulence studies in the atmospheric boundary layer (ABL). We conducted Doppler Light Detection and Ranging (LiDAR) measurements in 2019 using the 3-Dimensional Real-time Atmospheric Monitoring System (3DREAMS) to reveal the characteristics of typical daytime turbulent mixing processes in CTBL over Hong Kong. We assessed the contribution of cloud radiative cooling on turbulent mixing and determined the altitudinal dependence of the contribution of surface heating and vertical wind shear to turbulent mixing. Our results show that more downdrafts and updrafts in spring and autumn were observed and positively associated with seasonal cloud fraction. These results reveal that cloud radiative cooling was the main source of downdraft, which was also confirmed by our detailed case study of vertical velocity. Compared to winter and autumn, cloud base heights were lower in spring and summer. Cloud radiative cooling contributed ~32% to turbulent mixing even near the surface, although the contribution was relatively weaker compared to surface heating and vertical wind shear. Surface heating and vertical wind shear together contributed to ~45% of turbulent mixing near the surface, but wind shear can affect up to ~1100 m while surface heating can only reach ~450 m. Despite the fact that more research is still needed to further understand the processes, our findings provide useful references for local weather forecast and air quality studies.


2013 ◽  
Vol 13 (7) ◽  
pp. 18855-18904
Author(s):  
J. Kazil ◽  
G. Feingold ◽  
H. Wang ◽  
T. Yamaguchi

Abstract. The interaction between marine boundary layer cellular cloudiness and surface fluxes of sensible and latent heat is investigated. The investigation focuses on the non-precipitating closed-cell state and the precipitating open-cell state at low geostrophic wind speed. The Advanced Research WRF model is used to conduct cloud-system-resolving simulations with interactive surface fluxes of sensible heat, latent heat, and of sea salt aerosol, and with a detailed representation of the interaction between aerosol particles and clouds. The mechanisms responsible for the temporal evolution and spatial distribution of the surface heat fluxes in the closed- and open-cell state are investigated and explained. It is found that the closed-cell state imposes its horizontal spatial structure on surface air temperature and water vapor, and, to a lesser degree, on the surface sensible and latent heat flux. The responsible mechanism is the entrainment of dry free tropospheric air into the boundary layer. The open-cell state drives oscillations in surface air temperature, water vapor, and in the surface fluxes of sensible heat, latent heat, and of sea salt aerosol. Here, the responsible mechanism is the periodic formation of clouds, rain, and of cold and moist pools with elevated wind speed. Open-cell cloud formation, cloud optical depth and liquid water path, and cloud and rain water path are identified as good predictors of the spatial structure of surface air temperature and sensible heat flux, but not of surface water vapor and latent heat flux. It is shown that the open-cell state creates conditions conducive to its maintenance by enhancing the surface sensible heat flux. The open-cell state also enhances the sea-salt flux relative to the closed-cell state. While the open-cell state under consideration is not depleted in aerosol and is insensitive to variations in sea-salt fluxes, in aerosol-depleted conditions, the enhancement of the sea-salt flux may replenish the aerosol needed for cloud formation and hence contribute to the maintenance of the open-cell state. Spatial homogenization of the surface fluxes is found to have only a small effect on cloud properties in the investigated cases. This indicates that sub-grid scale spatial variability in the surface flux of sensible and latent heat and of sea salt aerosol may not be required in large scale and global models to describe marine boundary layer cellular cloudiness.


2011 ◽  
Vol 11 (2) ◽  
pp. 4687-4748 ◽  
Author(s):  
J. Kazil ◽  
H. Wang ◽  
G. Feingold ◽  
A. D. Clarke ◽  
J. R. Snider ◽  
...  

Abstract. Chemical and aerosol processes in the transition from closed- to open-cell circulation in the remote, cloudy marine boundary layer are explored. It has previously been shown that precipitation can initiate a transition from the closed- to the open-cellular state, but that the boundary layer cannot maintain this open-cell state without a resupply of cloud condensation nuclei (CCN). Potential sources include wind-driven production of sea salt particles from the ocean, nucleation from the gas phase, and entrainment from the free troposphere. In order to investigate aerosol sources in the marine boundary layer and their role in supplying new particles, we have coupled in detail chemical, aerosol, and cloud processes in the WRF/Chem model, and added state-of-the-art representations of sea salt emissions and aerosol nucleation. We introduce the new features of the model and conduct simulations of the marine boundary layer in the transition from a closed- to an open-cell state. Results are compared with observations in the Southeast Pacific boundary layer during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx). The transition from the closed- to the open-cell state generates conditions that are conducive to nucleation by forming a cloud-scavenged, ultra-clean layer below the inversion base. Open cell wall updrafts loft dimethyl sulfide from the ocean surface into the ultra-clean layer, where it is oxidized during daytime to SO2 and subsequently to H2SO4. Low H2SO4 condensation sink values in the ultra-clean layer allow H2SO4 to rise to concentrations at which aerosol nucleation proceeds efficiently. The existence of the ultra-clean layer is confirmed by observations. We find that the observed DMS flux from the ocean in the VOCALS-REx region can support a nucleation source of aerosol in open cells that exceeds sea salt emissions in terms of the number of particles produced. The freshly nucleated, nanometer-sized aerosol particles need, however, time grow to sizes large enough to act as CCN. In contrast, mechanical production of particles from the ocean surface by near-surface winds provides a steady source of larger particles that are effective CCN at a rate exceeding a threshold for maintenance of open-cell circulation. Entrainment of aerosol from the free troposphere contributes significantly to boundary layer aerosol for the considered VOCALS-REx case, but less than sea salt aerosol emissions.


2014 ◽  
Vol 142 (2) ◽  
pp. 668-685 ◽  
Author(s):  
Maike Ahlgrimm ◽  
Richard Forbes

Abstract In this study, the representation of marine boundary layer clouds is investigated in the ECMWF model using observations from the Atmospheric Radiation Measurement (ARM) mobile facility deployment to Graciosa Island in the North Atlantic. Systematic errors in the occurrence of clouds, liquid water path, precipitation, and surface radiation are assessed in the operational model for a 19-month-long period. Boundary layer clouds were the most frequently observed cloud type but were underestimated by 10% in the model. Systematic but partially compensating surface radiation errors exist and can be linked to opposing cloud cover and liquid water path errors in broken (shallow cumulus) and overcast (stratocumulus) low-cloud regimes, consistent with previously reported results from the continental ARM Southern Great Plains (SGP) site. Occurrence of precipitation is overestimated by a factor of 1.5 at cloud base and by a factor of 2 at the surface, suggesting deficiencies in both the warm-rain formation and subcloud evaporation parameterizations. A single-column version of the ECMWF model is used to test combined changes to the parameterizations of boundary layer, autoconversion/accretion, and rain evaporation processes at Graciosa. Low-cloud occurrence, liquid water path, radiation biases, and precipitation occurrence are all significantly improved when compared to the ARM observations. Initial results from the modified parameterizations in the full model show improvement in the global top-of-the-atmosphere shortwave radiation, suggesting the reduced errors in the comparison at Graciosa are more widely applicable to boundary layer cloud around the globe.


Sign in / Sign up

Export Citation Format

Share Document