scholarly journals Ozone and carbon monoxide over India during the summer monsoon: regional emissions and transport

2016 ◽  
Vol 16 (5) ◽  
pp. 3013-3032 ◽  
Author(s):  
Narendra Ojha ◽  
Andrea Pozzer ◽  
Armin Rauthe-Schöch ◽  
Angela K. Baker ◽  
Jongmin Yoon ◽  
...  

Abstract. We compare in situ measurements of ozone (O3) and carbon monoxide (CO) profiles from the CARIBIC program with the results from the regional chemistry transport model (WRF-Chem) to investigate the role of local and regional emissions and long-range transport over southern India during the summer monsoon of 2008. WRF-Chem successfully reproduces the general features of O3 and CO distributions over the South Asian region. However, absolute CO concentrations in the lower troposphere are typically underestimated. Here we investigate the influence of local relative to remote emissions through sensitivity simulations. The influence of 50 % increased CO emissions over South Asia leads to a significant enhancement (upto 20 % in July) in upper tropospheric CO in the northern and central Indian regions. Over Chennai in southern India, this causes a 33 % increase in surface CO during June. However, the influence of enhanced local and regional emissions is found to be smaller (5 %) in the free troposphere over Chennai, except during September. Local to regional emissions are therefore suggested to play a minor role in the underestimation of CO by WRF-Chem during June–August. In the lower troposphere, a high pollution (O3: 146.4 ± 12.8, CO: 136.4 ± 12.2 nmol mol−1) event (15 July 2008), not reproduced by the model, is shown to be due to transport of photochemically processed air masses from the boundary layer in southern India. A sensitivity simulation combined with backward trajectories indicates that long-range transport of CO to southern India is significantly underestimated, particularly in air masses from the west, i.e., from Central Africa. This study highlights the need for more aircraft-based measurements over India and adjacent regions and the improvement of global emission inventories.

2015 ◽  
Vol 15 (15) ◽  
pp. 21133-21176 ◽  
Author(s):  
N. Ojha ◽  
A. Pozzer ◽  
A. Rauthe-Schöch ◽  
A. K. Baker ◽  
J. Yoon ◽  
...  

Abstract. We compare in situ measurements of ozone (O3) and carbon monoxide (CO) profiles from the CARIBIC program with the results from the regional chemistry transport model (WRF-Chem) to investigate the role of local/regional emissions and long-range transport over southern India during the summer monsoon of 2008. WRF-Chem successfully reproduces the general features of O3 and CO distributions over the South Asian region. However, the absolute CO concentrations in lower troposphere are typically underestimated. Here we investigate the influence of local relative to remote emissions through sensitivity simulations. The influence of 50 % enhanced CO emissions over South Asia is found to be 33 % increase in surface CO during June. The influence of enhanced local emissions is found to be smaller (5 %) in the free troposphere, except during September. Local to regional emissions are therefore suggested to play a minor role in the underestimation of CO by WRF-Chem during June–August. In the lower troposphere, ahigh pollution (O3: 146.4 ± 12.8 nmol mol−1, CO: 136.4 ± 12.2 nmol mol−1) event (15 July 2008), not reproduced by the model, is shown to be due to transport of photochemically processed air masses from the boundary layer into southern India. Sensitivity simulation combined with backward trajectories indicates that long-range transport of CO to southern India is significantly underestimated, particularly in air masses from the west, i.e. from Central Africa. This study highlights the need for more aircraft-based measurements over India and adjacent regions and the improvement of emission inventories.


2017 ◽  
Vol 17 (21) ◽  
pp. 13233-13263 ◽  
Author(s):  
Uri Dayan ◽  
Philippe Ricaud ◽  
Régina Zbinden ◽  
François Dulac

Abstract. The eastern Mediterranean (EM) is one of the regions in the world where elevated concentrations of primary and secondary gaseous air pollutants have been reported frequently, mainly in summer. This review discusses published studies of the atmospheric dispersion and transport conditions characterizing this region during the summer, followed by a description of some essential studies dealing with the corresponding concentrations of air pollutants such as ozone, carbon monoxide, total reactive nitrogen, methane, and sulfate aerosols observed there. The interlaced relationship between the downward motion of the subsiding air aloft induced by global circulation systems affecting the EM and the depth of the Persian Trough, a low-pressure trough that extends from the Asian monsoon at the surface controlling the spatiotemporal distribution of the mixed boundary layer during summer, is discussed. The strength of the wind flow within the mixed layer and its depth affect much the amount of pollutants transported and determine the potential of the atmosphere to disperse contaminants off their origins in the EM. The reduced mixed layer and the accompanying weak westerlies, characterizing the summer in this region, led to reduced ventilation rates, preventing an effective dilution of the contaminants. Several studies pointing at specific local (e.g., ventilation rates) and regional peculiarities (long-range transport) enhancing the build-up of air pollutant concentrations are presented. Tropospheric ozone (O3) concentrations observed in the summer over the EM are among the highest over the Northern Hemisphere. The three essential processes controlling its formation (i.e., long-range transport of polluted air masses, dynamic subsidence at mid-tropospheric levels, and stratosphere-to-troposphere exchange) are reviewed. Airborne campaigns and satellite-borne initiatives have indicated that the concentration values of reactive nitrogen identified as precursors in the formation of O3 over the EM were found to be 2 to 10 times higher than in the hemispheric background troposphere. Several factors favor sulfate particulate abundance over the EM. Models, aircraft measurements, and satellite-derived data have clearly shown that sulfate has a maximum during spring and summer over the EM. The carbon monoxide (CO) seasonal cycle, as obtained from global background monitoring sites in the EM, is mostly controlled by the tropospheric concentration of the hydroxyl radical (OH) and therefore demonstrates high concentrations over winter months and the lowest concentrations during summer when photochemistry is active. Modeling studies have shown that the diurnal variations in CO concentration during the summer result from long-range CO transport from European anthropogenic sources, contributing 60 to 80 % of the boundary-layer CO over the EM. The values retrieved from satellite data enable us to derive the spatial distribution of methane (CH4), identifying August as the month with the highest levels over the EM. The outcomes of a recent extensive examination of the distribution of methane over the tropospheric Mediterranean Basin, as part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) program, using model simulations and satellite measurements, are coherent with other previous studies. Moreover, this methane study provides some insight into the role of the Asian monsoon anticyclone in controlling the variability of CH4 pollutant within mid-to-upper tropospheric levels above the EM in summer.


2017 ◽  
Author(s):  
Xiaobin Xu ◽  
Hualong Zhang ◽  
Weili Lin ◽  
Ying Wang ◽  
Shihui Jia

Abstract. Both peroxyacetyl nitrate (PAN) and ozone (O3) are key photochemical products in the atmosphere. Most of the previous in-situ observations of both gases have been made in polluted regions and at low altitude sites. Here we present first simultaneous measurements of PAN and O3 at Nam Co (NMC, 90°57′ E, 30°46′ N, 4745 m  a.s.l.), a remote site in the central Tibetan Plateau (TP). The observations were made during summer periods in 2011 and 2012. The PAN concentrations averaged 0.36 ppb (range: 0.11–0.76 ppb) and 0.44 ppb (range: 0.21–0.99 ppb) during 16–25 August 2011 and 15 May to 13 July 2012, respectively. The O3 concentration varied from 27.9 ppb to 96.4 ppb, with an average of 60.0 ppb. Profound diurnal cycles of PAN and O3 were observed, with minimum values around 05:00 LT, steep rises in the early morning, and broader platforms of high values during 09:00–20:00 LT. We find that the evolution of planetary boundary layer (PBL) played a key role in shaping the diurnal patterns of both gases, particularly the rapid increases of PAN and O3 in the early morning. Air entrainment from the free troposphere into the PBL seemed to cause the early morning increase and be a key factor of sustaining the daytime high concentrations of both gases. The days with higher daytime PBL (about 3 km) showed stronger diurnal variations of both gases and were mainly distributed in the drier pre-monsoon period, while those with shallower daytime PBL (about 2 km) showed minor diurnal variations of both gases and were mainly distributed in the humid monsoon period. Episodes of higher PAN levels were observed occasionally at NMC. These PAN episodes were caused either by rapid downward transport of air masses from the middle/upper troposphere or by long-range transport of PAN plumes from North India. The PAN level in the downward transport cases ranged from 0.5 ppb to 0.7 ppb and may indicate the PAN abundance in the middle/upper troposphere. In the long-range transport case, the PAN level varied in the range of 0.6–1.0 ppb. This long-range transport process influenced most of the western and central TP region for about a week in early June 2012. Our results suggest that polluted air masses from South Asia can significantly enhance the PAN level over the TP. As PAN act as a reservoir of NOx, the impacts of pollution transport from South Asia on tropospheric photochemistry over the TP region deserve further studies.


2021 ◽  
Author(s):  
Ivana Tucaković ◽  
Sarah Mateša ◽  
Ivana Coha ◽  
Marija Marguš ◽  
Milan Čanković ◽  
...  

<p>Croatian Science Foundation MARRES project (MARine lake (Rogoznica) as a model for EcoSystem functioning in a changing environment) aims to investigate the unique environment (slow exchange of seawater with the sea; atmospheric input is the only source of freshwater) of the marine lake which is an example of highly stratified (permanent anoxia bellow 9 m depth), and by climate changes affected marine system in the middle of the eastern Adriatic coast (43.53° N, 15.95° E). The area of the lake is characterized by the extensive tourism and mariculture, and the low impact of local industrial activities. It is also affected by the combined influence of long-range transport of air masses and local emissions (open-fire events).</p><p>An important part of the project is focused on the exchange and interaction between atmosphere, water column and sediment by measuring the atmospheric input (wet and dry deposition) of sulphur compounds, organic carbon, trace metals and radionuclides (Be-7, Pb-210).</p><p>This work for the first time will present the current state of the measurements of radioactivity in the Rogoznica lake area, including samples of aerosol particulate matter, PM2.5 < 2.5 um, rainwater and lake water column. Namely, the concentrations of Be-7 and Pb-210 in PM2.5 are measured to determine and correlate the dynamics of particle transport, meteorological information, especially origin of air masses and seasonal variation of PM2.5. While presence of Be-7 indicates the recent wet or dry deposition from the upper parts of the atmosphere, Pb-210 may be used as a tracer for continental air masses. Therefore, it can also indicate the influence of the pollution induced by human activity. Regarding that, special attention will be paid to compare results before and during the Covid-19 lockdown periods.</p><p>So far, preliminary results do not show significant difference in PM2.5 masses and measured radionuclide activity concentrations for the lockdown period. Be-7 and Pb-210 were regularly detected in aerosols collected on a glass fiber filters during a one-week sampling periods with the air flow rate of 2.3 m<sup>3</sup>/h. Their activity concentrations are determined by gamma spectrometry using High Purity Germanium detectors. The results are found to be correlated with PM2.5 masses, ranging from 2.9 to 12.2 Bq/m<sup>3</sup> for Be-7 and from 0.5 to 2.5 Bq/m<sup>3</sup> for Pb-210. First analyses show that the highest values can be related to the long-range transport of air masses and to the recorded near open-fire event. As expected, Be-7 is also detected in almost every rainwater sample (event), with the activity concentration up to 5.6 Bq/L, while low activities of Pb-210 are detected only sporadically. Related to that, Be-7 is detected in lake water column as well, but only in the surface layer and in samples collected during, or immediately after the rain events. </p><p>Dynamics and seasonal variation of radionuclide activity concentrations in here studied samples will be discussed, and the relationships with some meteorological parameters (temperature, wind speed, relative humidity, precipitation level) as well as local and long-range transport and physico-chemical conditions in the lake water column will be established.</p>


2017 ◽  
Author(s):  
Uri Dayan ◽  
Philippe Ricaud ◽  
Regina Zbinden ◽  
Francois Dulac

Abstract. The Eastern Mediterranean (EM) is one of the regions in the world where elevated concentrations of primary and secondary gaseous air pollutants have been reported frequently, mainly in summer. This review discusses published studies of the atmospheric dispersion and transport conditions characterizing this region during the summer, followed by a description of some essential studies dealing with the corresponding concentrations of air pollutants such as ozone, carbon monoxide, total reactive nitrogen, methane and sulfate aerosols observed there. The interlaced relationship between the downward motion of the subsiding air aloft induced by global circulation systems affecting the EM and the depth of the Persian Trough, a low-pressure trough that extends from the Asian monsoon at the surface controlling the spatio-temporal distribution of the mixed boundary layer during summer is discussed. The strength of the wind flow within the mixed layer and its depth affect much the amount of pollutants transported and determine the potential of the atmosphere to disperse contaminants off their origins in the EM. The reduced mixed layer and the accompanying weak westerlies, characterizing the summer in this region, lead to reduced ventilation rates, preventing an effective dilution of the contaminants. Several studies pointing at specific local (e.g. ventilation rates) and regional peculiarities (long-range transport) enhancing the building up of pollutant concentrations are presented. Tropospheric ozone concentrations observed in the summer over the EM are among the highest over the Northern Hemisphere. The three essential processes controlling its formation (i.e., long- range transport of polluted air masses, dynamic subsidence at mid-tropospheric levels, and stratosphere-to-troposphere exchange) are reviewed. Airborne campaigns and satellite-borne initiatives have indicated that the concentration values of reactive nitrogen identified as precursors in the formation of ozone over the EM were found to be 2 to 10 times higher than in the hemispheric background troposphere. Several factors favor sulfate particulate abundance over the EM. Models, aircraft measurements, and satellite derived data, have clearly shown that sulfate has a maximum during spring and summer over the EM. The carbon monoxide (CO) seasonal cycle, as obtained from global background monitoring sites in the EM is mostly controlled by the tropospheric concentration of the hydroxyl radical (OH), and therefore demonstrates high concentrations over winter months and the lowest during summer when photochemistry is active. Modeling studies have shown that the diurnal variations in CO concentration during the summer result from long-range CO transport from European anthropogenic sources, contributing 60 to 80 % of the boundary-layer CO over the EM. The values retrieved from satellite data enable us to derive the spatial distribution of methane (CH4), identifying August as the month with the highest levels over the EM. The outcomes of a recent extensive examination of the distribution of methane over the tropospheric Mediterranean Basin, as part of the Chemical and Aerosol Mediterranean Experiment (ChArMEx) program, using model simulations and satellite measurements is coherent with other previous studies. Moreover, this methane study provides some insights on the role of the Asian monsoon anticyclone in controlling the variability of CH4 pollutant within mid-to-upper tropospheric levels above the EM in summer.


2006 ◽  
Vol 14 (3) ◽  
pp. 169-186 ◽  
Author(s):  
Eiliv Steinnes ◽  
Andrew J Friedland

This review focuses on the long-range atmospheric transport of metals to organic-rich surface soils (mostly 50–90% organic matter) in the temperate, coniferous, and boreal zones of North America and Europe. From various air-pollution related measurements (air, precipitation, moss, peat cores) Pb and Zn are known to be transported long distances in the air in large amounts. Arsenic, Cd, Hg, Sb, and Se are also typical representatives of long-range transported air masses, and there is evidence that Ag, Bi, In, Mo, Tl, and W belong to this group of elements. Through the use of “environmental archives” such as ice and peat cores it has become evident that long-range transport of pollutants and associated contamination of natural surfaces is not just a recent phenomenon. There is compelling evidence for widespread enrichment of surface soil horizons in Pb from long-range transport, and many studies support enrichment of Zn. Mercury is also generally elevated by anthropogenic emissions over natural levels in organic-rich surface soils, whereas results for Cd are less conclusive. There is evidence that As, Se, Ag, Mo, In, Sb, W, Tl, and Bi all are subject to some enrichment in organic-rich surface soils from long-range atmospheric transport, but studies are still few for most of these elements. With the exception of Pb, little is known about residence times of the elements in the organic-rich surface horizon, and more research is needed on this topic. Further studies are desirable on the temporal and spatial trends in supply of the above elements, which are poorly known in large parts of the northern temperate zone.Key words: natural soils, metals, long-range atmospheric transport, organic matter, lead, zinc, cadmium, mercury.


1997 ◽  
Vol 102 (D23) ◽  
pp. 28637-28649 ◽  
Author(s):  
Yoshizumi Kajii ◽  
Hajime Akimoto ◽  
Yuichi Komazaki ◽  
Shigeru Tanaka ◽  
Hitoshi Mukai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document