Black and White Episodes, Chemical Evolution of Eurasian Air Masses, and Long-Range Transport of Carbon to the Arctic

1982 ◽  
pp. 327-342 ◽  
Author(s):  
K. A. Rahn ◽  
C. Brosset ◽  
B. Ottar ◽  
E. M. Patterson
2018 ◽  
Author(s):  
Jonathan P. D. Abbatt ◽  
W. Richard Leaitch ◽  
Amir A. Aliabadi ◽  
Alan K. Bertram ◽  
Jean-Pierre Blanchet ◽  
...  

Abstract. Motivated by the need to predict how the Arctic atmosphere will change in a warming world, this article summarizes recent advances made by the research consortium NETCARE (Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments) that contribute to our fundamental understanding of Arctic aerosol particles as they relate to climate forcing. The overall goal of NETCARE research has been to use an interdisciplinary approach encompassing extensive field observations and a range of chemical transport, earth system, and biogeochemical models. Several major findings and advances have emerged from NETCARE since its formation in 2013 . (1) Unexpectedly high summertime dimethyl sulfide (DMS) levels were identified in ocean water and the overlying atmosphere in the Canadian Arctic Archipelago (CAA). Furthermore, melt ponds, which are widely prevalent, were identified as an important DMS source. (2) Evidence was found of widespread particle nucleation and growth in the marine boundary layer in the CAA in the summertime. DMS-oxidation-driven nucleation is facilitated by the presence of atmospheric ammonia arising from sea bird colony emissions, and potentially also from coastal regions, tundra, and biomass burning. Via accumulation of secondary organic material (SOA), a significant fraction of the new particles grow to sizes that are active in cloud droplet formation. Although the gaseous precursors to Arctic marine SOA remain poorly defined, the measured levels of common continental SOA precursors (isoprene and monoterpenes) were low, whereas elevated mixing ratios of oxygenated volatile organic compounds were inferred to arise via processes involving the sea surface microlayer. (3) The variability in the vertical distribution of black carbon (BC) under both springtime Arctic haze and more pristine summertime aerosol conditions was observed. Measured particle size distributions and mixing states were used to constrain, for the first time, calculations of aerosol–climate interactions under Arctic conditions. Aircraft- and ground-based measurements were used to better establish the BC source regions that supply the Arctic via long-range transport mechanisms. (4) Measurements of ice nucleating particles (INPs) in the Arctic indicate that a major source of these particles is mineral dust, likely derived from local sources in the summer and long-range transport in the spring. In addition, INPs are abundant in the sea surface microlayer in the Arctic, and possibly play a role in ice nucleation in the atmosphere when mineral dust concentrations are low. (5) Amongst multiple aerosol components, BC was observed to have the smallest effective deposition velocities to high Arctic snow.


2017 ◽  
Author(s):  
Xiaobin Xu ◽  
Hualong Zhang ◽  
Weili Lin ◽  
Ying Wang ◽  
Shihui Jia

Abstract. Both peroxyacetyl nitrate (PAN) and ozone (O3) are key photochemical products in the atmosphere. Most of the previous in-situ observations of both gases have been made in polluted regions and at low altitude sites. Here we present first simultaneous measurements of PAN and O3 at Nam Co (NMC, 90°57′ E, 30°46′ N, 4745 m  a.s.l.), a remote site in the central Tibetan Plateau (TP). The observations were made during summer periods in 2011 and 2012. The PAN concentrations averaged 0.36 ppb (range: 0.11–0.76 ppb) and 0.44 ppb (range: 0.21–0.99 ppb) during 16–25 August 2011 and 15 May to 13 July 2012, respectively. The O3 concentration varied from 27.9 ppb to 96.4 ppb, with an average of 60.0 ppb. Profound diurnal cycles of PAN and O3 were observed, with minimum values around 05:00 LT, steep rises in the early morning, and broader platforms of high values during 09:00–20:00 LT. We find that the evolution of planetary boundary layer (PBL) played a key role in shaping the diurnal patterns of both gases, particularly the rapid increases of PAN and O3 in the early morning. Air entrainment from the free troposphere into the PBL seemed to cause the early morning increase and be a key factor of sustaining the daytime high concentrations of both gases. The days with higher daytime PBL (about 3 km) showed stronger diurnal variations of both gases and were mainly distributed in the drier pre-monsoon period, while those with shallower daytime PBL (about 2 km) showed minor diurnal variations of both gases and were mainly distributed in the humid monsoon period. Episodes of higher PAN levels were observed occasionally at NMC. These PAN episodes were caused either by rapid downward transport of air masses from the middle/upper troposphere or by long-range transport of PAN plumes from North India. The PAN level in the downward transport cases ranged from 0.5 ppb to 0.7 ppb and may indicate the PAN abundance in the middle/upper troposphere. In the long-range transport case, the PAN level varied in the range of 0.6–1.0 ppb. This long-range transport process influenced most of the western and central TP region for about a week in early June 2012. Our results suggest that polluted air masses from South Asia can significantly enhance the PAN level over the TP. As PAN act as a reservoir of NOx, the impacts of pollution transport from South Asia on tropospheric photochemistry over the TP region deserve further studies.


2021 ◽  
Author(s):  
Birgit Rogalla ◽  
Susan E. Allen ◽  
Manuel Colombo ◽  
Paul G. Myers ◽  
Kristin J. Orians

<p>The rapidly changing conditions of the Arctic sea ice system have cascading impacts on the biogeochemical cycles of the ocean. Sea ice transports sediments, nutrients, trace metals, pollutants, and gases from the extensive continental shelves into the more isolated central basins. However, it is difficult to assess the net contribution of this supply mechanism on nutrients in the surface ocean. In this study, we used Manganese (Mn), a micronutrient and tracer which can integrate source fluctuations in space and time, to understand the net impact of the long range transport of sea ice for Mn.</p><p>We developed a three-dimensional dissolved Mn model within a subdomain of the 1/12 degree Arctic and Northern Hemispheric Atlantic (ANHA12) configuration of NEMO centred on the Canadian Arctic Archipelago, and evaluated this model with in situ observations from the 2015 Canadian GEOTRACES cruises. The Mn model incorporates parameterizations for the contributions from river discharge, sediment resuspension, atmospheric deposition of aerosols directly to the ocean and via melt from sea ice, release of sediment from sea ice, and reversible scavenging, while the NEMO-TOP engine takes care of the advection and diffusion of the tracers. </p><p>Simulations with this model from 2002 to 2019 indicate that the majority of external Mn contributed annually to the Canada Basin surface is released by sediment from sea ice, much of which originates from the Siberian shelves. Reduced sea ice longevity in the Siberian shelf regions has been postulated to result in the disruption of the long range transport of sea ice by the transpolar drift. This reduced sea ice supply has the potential to decrease the Canada Basin Mn surface maximum and downstream Mn supply, with implications for other nutrients (such as Fe) contained in ice-rafted sediments as well. These results demonstrate some of the many changes to the biogeochemical supply mechanisms expected in the near-future in the Arctic Ocean and the subpolar seas.</p>


2021 ◽  
Author(s):  
Ivana Tucaković ◽  
Sarah Mateša ◽  
Ivana Coha ◽  
Marija Marguš ◽  
Milan Čanković ◽  
...  

<p>Croatian Science Foundation MARRES project (MARine lake (Rogoznica) as a model for EcoSystem functioning in a changing environment) aims to investigate the unique environment (slow exchange of seawater with the sea; atmospheric input is the only source of freshwater) of the marine lake which is an example of highly stratified (permanent anoxia bellow 9 m depth), and by climate changes affected marine system in the middle of the eastern Adriatic coast (43.53° N, 15.95° E). The area of the lake is characterized by the extensive tourism and mariculture, and the low impact of local industrial activities. It is also affected by the combined influence of long-range transport of air masses and local emissions (open-fire events).</p><p>An important part of the project is focused on the exchange and interaction between atmosphere, water column and sediment by measuring the atmospheric input (wet and dry deposition) of sulphur compounds, organic carbon, trace metals and radionuclides (Be-7, Pb-210).</p><p>This work for the first time will present the current state of the measurements of radioactivity in the Rogoznica lake area, including samples of aerosol particulate matter, PM2.5 < 2.5 um, rainwater and lake water column. Namely, the concentrations of Be-7 and Pb-210 in PM2.5 are measured to determine and correlate the dynamics of particle transport, meteorological information, especially origin of air masses and seasonal variation of PM2.5. While presence of Be-7 indicates the recent wet or dry deposition from the upper parts of the atmosphere, Pb-210 may be used as a tracer for continental air masses. Therefore, it can also indicate the influence of the pollution induced by human activity. Regarding that, special attention will be paid to compare results before and during the Covid-19 lockdown periods.</p><p>So far, preliminary results do not show significant difference in PM2.5 masses and measured radionuclide activity concentrations for the lockdown period. Be-7 and Pb-210 were regularly detected in aerosols collected on a glass fiber filters during a one-week sampling periods with the air flow rate of 2.3 m<sup>3</sup>/h. Their activity concentrations are determined by gamma spectrometry using High Purity Germanium detectors. The results are found to be correlated with PM2.5 masses, ranging from 2.9 to 12.2 Bq/m<sup>3</sup> for Be-7 and from 0.5 to 2.5 Bq/m<sup>3</sup> for Pb-210. First analyses show that the highest values can be related to the long-range transport of air masses and to the recorded near open-fire event. As expected, Be-7 is also detected in almost every rainwater sample (event), with the activity concentration up to 5.6 Bq/L, while low activities of Pb-210 are detected only sporadically. Related to that, Be-7 is detected in lake water column as well, but only in the surface layer and in samples collected during, or immediately after the rain events. </p><p>Dynamics and seasonal variation of radionuclide activity concentrations in here studied samples will be discussed, and the relationships with some meteorological parameters (temperature, wind speed, relative humidity, precipitation level) as well as local and long-range transport and physico-chemical conditions in the lake water column will be established.</p>


2019 ◽  
Vol 19 (4) ◽  
pp. 2527-2560 ◽  
Author(s):  
Jonathan P. D. Abbatt ◽  
W. Richard Leaitch ◽  
Amir A. Aliabadi ◽  
Allan K. Bertram ◽  
Jean-Pierre Blanchet ◽  
...  

Abstract. Motivated by the need to predict how the Arctic atmosphere will change in a warming world, this article summarizes recent advances made by the research consortium NETCARE (Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments) that contribute to our fundamental understanding of Arctic aerosol particles as they relate to climate forcing. The overall goal of NETCARE research has been to use an interdisciplinary approach encompassing extensive field observations and a range of chemical transport, earth system, and biogeochemical models. Several major findings and advances have emerged from NETCARE since its formation in 2013. (1) Unexpectedly high summertime dimethyl sulfide (DMS) levels were identified in ocean water (up to 75 nM) and the overlying atmosphere (up to 1 ppbv) in the Canadian Arctic Archipelago (CAA). Furthermore, melt ponds, which are widely prevalent, were identified as an important DMS source (with DMS concentrations of up to 6 nM and a potential contribution to atmospheric DMS of 20 % in the study area). (2) Evidence of widespread particle nucleation and growth in the marine boundary layer was found in the CAA in the summertime, with these events observed on 41 % of days in a 2016 cruise. As well, at Alert, Nunavut, particles that are newly formed and grown under conditions of minimal anthropogenic influence during the months of July and August are estimated to contribute 20 % to 80 % of the 30–50 nm particle number density. DMS-oxidation-driven nucleation is facilitated by the presence of atmospheric ammonia arising from seabird-colony emissions, and potentially also from coastal regions, tundra, and biomass burning. Via accumulation of secondary organic aerosol (SOA), a significant fraction of the new particles grow to sizes that are active in cloud droplet formation. Although the gaseous precursors to Arctic marine SOA remain poorly defined, the measured levels of common continental SOA precursors (isoprene and monoterpenes) were low, whereas elevated mixing ratios of oxygenated volatile organic compounds (OVOCs) were inferred to arise via processes involving the sea surface microlayer. (3) The variability in the vertical distribution of black carbon (BC) under both springtime Arctic haze and more pristine summertime aerosol conditions was observed. Measured particle size distributions and mixing states were used to constrain, for the first time, calculations of aerosol–climate interactions under Arctic conditions. Aircraft- and ground-based measurements were used to better establish the BC source regions that supply the Arctic via long-range transport mechanisms, with evidence for a dominant springtime contribution from eastern and southern Asia to the middle troposphere, and a major contribution from northern Asia to the surface. (4) Measurements of ice nucleating particles (INPs) in the Arctic indicate that a major source of these particles is mineral dust, likely derived from local sources in the summer and long-range transport in the spring. In addition, INPs are abundant in the sea surface microlayer in the Arctic, and possibly play a role in ice nucleation in the atmosphere when mineral dust concentrations are low. (5) Amongst multiple aerosol components, BC was observed to have the smallest effective deposition velocities to high Arctic snow (0.03 cm s−1).


2017 ◽  
Author(s):  
Kohei Ikeda ◽  
Hiroshi Tanimoto ◽  
Takafumi Sugita ◽  
Hideharu Akiyoshi ◽  
Yugo Kanaya ◽  
...  

Abstract. We implemented a tagged tracer method of black carbon (BC) into a global chemistry-transport model GEOS-Chem, examined the pathways and efficiency of long-range transport from a variety of anthropogenic and biomass burning emission sources to the Arctic, and quantified the source contributions of individual emissions. Firstly, we evaluated the simulated BC by comparing it with observations at the Arctic sites and found that the simulated seasonal variations were improved by implementing an aging parameterization and reducing the wet scavenging rate by ice clouds. For tagging BC, we added BC tracers distinguished by source types (anthropogenic and biomass burning) and regions; the global domain was divided into 16 and 27 regions for anthropogenic and biomass burning emissions, respectively. Our simulations showed that BC emitted from Europe and Russia was transported to the Arctic mainly in the lower troposphere during winter and spring. In particular, BC transported from Russia was widely spread over the Arctic in winter and spring, leading to a dominant contribution of 62 % to the Arctic BC near the surface as the annual mean. In contrast, BC emitted from East Asia was found to be transported in the middle troposphere into the Arctic mainly over the Okhotsk Sea and East Siberia during winter and spring. We identified an important window area, which allowed a strong incoming of East Asian BC to the Arctic (130°–180° E and 3–8 km altitude at 66° N). The model demonstrated that the contribution from East Asia to the Arctic had a maximum at about 5 km altitude due to uplifting during the long-range transport in early spring. The efficiency of BC transport from East Asia to the Arctic was smaller than that from other large source regions such as Europe, Russia and North America. However, the East Asian contribution was most important for BC in the middle troposphere (41 %) and BC burden over the Arctic (27 %) because of the large emissions from this region. These results suggested that the main sources of the Arctic BC differed with altitude. The contribution of all the anthropogenic sources to Arctic BC concentrations near the surface was dominant (90 %) on an annual basis. The contributions of biomass burning in boreal regions (Siberia, Alaska and Canada) to the annual total BC deposition onto the Arctic were estimated to be 12–15 %, which became the maximum during summer.


2006 ◽  
Vol 14 (3) ◽  
pp. 169-186 ◽  
Author(s):  
Eiliv Steinnes ◽  
Andrew J Friedland

This review focuses on the long-range atmospheric transport of metals to organic-rich surface soils (mostly 50–90% organic matter) in the temperate, coniferous, and boreal zones of North America and Europe. From various air-pollution related measurements (air, precipitation, moss, peat cores) Pb and Zn are known to be transported long distances in the air in large amounts. Arsenic, Cd, Hg, Sb, and Se are also typical representatives of long-range transported air masses, and there is evidence that Ag, Bi, In, Mo, Tl, and W belong to this group of elements. Through the use of “environmental archives” such as ice and peat cores it has become evident that long-range transport of pollutants and associated contamination of natural surfaces is not just a recent phenomenon. There is compelling evidence for widespread enrichment of surface soil horizons in Pb from long-range transport, and many studies support enrichment of Zn. Mercury is also generally elevated by anthropogenic emissions over natural levels in organic-rich surface soils, whereas results for Cd are less conclusive. There is evidence that As, Se, Ag, Mo, In, Sb, W, Tl, and Bi all are subject to some enrichment in organic-rich surface soils from long-range atmospheric transport, but studies are still few for most of these elements. With the exception of Pb, little is known about residence times of the elements in the organic-rich surface horizon, and more research is needed on this topic. Further studies are desirable on the temporal and spatial trends in supply of the above elements, which are poorly known in large parts of the northern temperate zone.Key words: natural soils, metals, long-range atmospheric transport, organic matter, lead, zinc, cadmium, mercury.


2016 ◽  
Vol 16 (5) ◽  
pp. 3013-3032 ◽  
Author(s):  
Narendra Ojha ◽  
Andrea Pozzer ◽  
Armin Rauthe-Schöch ◽  
Angela K. Baker ◽  
Jongmin Yoon ◽  
...  

Abstract. We compare in situ measurements of ozone (O3) and carbon monoxide (CO) profiles from the CARIBIC program with the results from the regional chemistry transport model (WRF-Chem) to investigate the role of local and regional emissions and long-range transport over southern India during the summer monsoon of 2008. WRF-Chem successfully reproduces the general features of O3 and CO distributions over the South Asian region. However, absolute CO concentrations in the lower troposphere are typically underestimated. Here we investigate the influence of local relative to remote emissions through sensitivity simulations. The influence of 50 % increased CO emissions over South Asia leads to a significant enhancement (upto 20 % in July) in upper tropospheric CO in the northern and central Indian regions. Over Chennai in southern India, this causes a 33 % increase in surface CO during June. However, the influence of enhanced local and regional emissions is found to be smaller (5 %) in the free troposphere over Chennai, except during September. Local to regional emissions are therefore suggested to play a minor role in the underestimation of CO by WRF-Chem during June–August. In the lower troposphere, a high pollution (O3: 146.4 ± 12.8, CO: 136.4 ± 12.2 nmol mol−1) event (15 July 2008), not reproduced by the model, is shown to be due to transport of photochemically processed air masses from the boundary layer in southern India. A sensitivity simulation combined with backward trajectories indicates that long-range transport of CO to southern India is significantly underestimated, particularly in air masses from the west, i.e., from Central Africa. This study highlights the need for more aircraft-based measurements over India and adjacent regions and the improvement of global emission inventories.


Sign in / Sign up

Export Citation Format

Share Document