scholarly journals Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China – Part 1: Overall trends and characteristics

2016 ◽  
Vol 16 (10) ◽  
pp. 6191-6205 ◽  
Author(s):  
Wanyun Xu ◽  
Weili Lin ◽  
Xiaobin Xu ◽  
Jie Tang ◽  
Jianqing Huang ◽  
...  

Abstract. Tropospheric ozone is an important atmospheric oxidant, greenhouse gas and atmospheric pollutant at the same time. The oxidation capacity of the atmosphere, climate, human and vegetation health can be impacted by the increase of the ozone level. Therefore, long-term determination of trends of baseline ozone is highly needed information for environmental and climate change assessment. So far, studies on the long-term trends of ozone at representative sites are mainly available for European and North American sites. Similar studies are lacking for China and many other developing countries. Measurements of surface ozone were carried out at a baseline Global Atmospheric Watch (GAW) station in the north-eastern Tibetan Plateau region (Mt Waliguan, 36°17′ N, 100°54′ E, 3816 m a.s.l.) for the period of 1994 to 2013. To uncover the variation characteristics, long-term trends and influencing factors of surface ozone at this remote site in western China, a two-part study has been carried out, with this part focusing on the overall characteristics of diurnal, seasonal and long-term variations and the trends of surface ozone. To obtain reliable ozone trends, we performed the Mann–Kendall trend test and the Hilbert–Huang transform (HHT) analysis on the ozone data. Our results confirm that the mountain-valley breeze plays an important role in the diurnal cycle of surface ozone at Waliguan, resulting in higher ozone values during the night and lower ones during the day, as was previously reported. Systematic diurnal and seasonal variations were found in mountain-valley breezes at the site, which were used in defining season-dependent daytime and nighttime periods for trend calculations. Significant positive trends in surface ozone were detected for both daytime (0.24 ± 0.16 ppbv year−1) and nighttime (0.28 ± 0.17 ppbv year−1). The largest nighttime increasing rate occurred in autumn (0.29 ± 0.11 ppbv year−1), followed by spring (0.24 ± 0.12 ppbv year−1), summer (0.22 ± 0.20 ppbv year−1) and winter (0.13 ± 0.10 ppbv year−1), respectively. The HHT spectral analysis identified four different stages with different positive trends, with the largest increase occurring around May 2000 and October 2010. The HHT results suggest that there were 2–4a, 7a and 11a periodicities in the time series of surface ozone at Waliguan. The results of this study can be used for assessments of climate and environment change and in the validation of chemistry–climate models.

Elem Sci Anth ◽  
2020 ◽  
Vol 8 ◽  
Author(s):  
Xiaobin Xu ◽  
Weili Lin ◽  
Wanyun Xu ◽  
Junli Jin ◽  
Ying Wang ◽  
...  

The first Tropospheric Ozone Assessment Report (TOAR) provides information on present-day distributions and long-term trends of ozone metrics relevant for climate change, human health, and vegetation. However, only few results are available in TOAR for China due to limited long-term ozone observations. Here, we present an integrated analysis of long-term measurements of surface ozone from eight sites distributed in the North China Plain (NCP) and Yangtze River Delta (YRD), the relatively underdeveloped region Northeast China, and the remote regions in Northwest and Southwest China. Trends and present-day values for seven annual and five seasonal ozone metrics were calculated following the TOAR methodologies. We compare the seasonal and diurnal cycles of ozone concentrations as well as the present-day values of ozone among sites and discuss the long-term trends in the ozone metrics. Large and significant increases of ozone are detected at the background site in the NCP, moderate increases at the global baseline site in western China, significant decreases at the northwestern edge of China, and nearly no trend at other sites. Extremely high values of ozone occurred in the NCP and YRD, particularly in warmer seasons. The present-day levels of summer ozone metrics in the NCP are much higher than the thresholds set in TOAR for the highest value groups of ozone metrics. The summer ozone metrics at the Shangdianzi background site in the NCP indicate increases at rates of more than 2%/yr during 2004–2016. In contrast, ozone at the Lin’an background site in the YRD was constant over the period 2006–2016. Our results fill some knowledge gaps in spatiotemporal changes of ozone in China and may be of useful in the assessment of ozone impacts on human health and vegetation.


2015 ◽  
Vol 15 (21) ◽  
pp. 30987-31024 ◽  
Author(s):  
W. Y. Xu ◽  
W. L. Lin ◽  
X. B. Xu ◽  
J. Tang ◽  
J. Q. Huang ◽  
...  

Abstract. Tropospheric ozone is an important atmospheric oxidant, greenhouse gas and atmospheric pollutant at the same time. The level of tropospheric ozone, particularly in the surface layer, is impacted by emissions of precursors and is subjected to meteorological conditions. Due its importance, the long-term variation trend of baseline ozone is highly needed for environmental and climate change assessment. So far, studies about the long-term trends of ozone at representative sites are mainly available for European and North American sites. Similar studies are lacking for China, a country with rapid economic growth for recent decades, and many other developing countries. To uncover the long-term characteristics and trends of baseline surface ozone, concentration in western China, measurements at a global baseline Global Atmospheric Watch (GAW) station in the north-eastern Tibetan Plateau region (Mt. Waliguan) for the period of 1994 to 2013 were analysed in this study, using a modified Mann–Kendall test and the Hilbert–Huang Transform analysis for the trend and periodicity analysis, respectively. Results reveal higher surface ozone during the night and lower during the day at Waliguan, due to mountain-valley breezes. A seasonal maximum in summer was found, which was probably caused by enhanced stratosphere-to-troposphere exchange events and/or by tropospheric photochemistry. Analysis suggests that there is a season-diurnal cycle in the three-dimensional winds on top of Mt. Waliguan. Season-dependent daytime and nighttime ranges of 6 h were determined based on the season-diurnal cycle in the three-dimensional winds and were used to sort subsets of ozone data for trend analysis. Significant increasing trends in surface ozone were detected for both daytime (1.5–2.7 ppbv 10 a−1) and nighttime (1.3–2.9 ppbv 10 a−1). Autumn and spring revealed the largest increase rates, while summer and winter showed relatively weaker increases. The HHT spectral analysis confirmed the increasing trends in surface ozone concentration and could further identify four different stages with different increasing rates, with the largest increase occurring around May 2000 and October 2010. A 2–4, 7 and 11 year periodicity was found in the surface ozone concentration. The results are highly valuable for related climate and environment change assessments of western China and surrounding areas, and for the validation of chemical-climate models.


2021 ◽  
Author(s):  
Oliver Krueger ◽  
Frauke Feser ◽  
Christopher Kadow ◽  
Ralf Weisse

<p>Global atmospheric reanalyses are commonly applied for the validation of climate models, diagnostic studies, and driving higher resolution numerical models with the emphasis on assessing climate variability and long-term trends. Over recent years, longer reanalyses spanning a period of more than hundred years have become available. In this study, the variability and long-term trends of storm activity is assessed over the northeast Atlantic in modern centennial reanalysis datasets, namely ERA-20cm, ERA-20c, CERA-20c, and the 20CR-reanalysis suite with 20CRv3 being the most recent one. All reanalyses, except from ERA-20cm, assimilate surface pressure observations, whereby ERA-20C and CERA-20c additionally assimilate surface winds. For the assessment, the well-established storm index of higher annual percentiles of geostrophic wind speeds derived from pressure observations at sea level over a relatively densely monitored marine area is used.</p><p>The results indicate that the examined centennial reanalyses are not able to represent long-term trends of storm activity over the northeast Atlantic, particularly in the earlier years of the period examined when compared with the geostrophic wind index based on pressure observations. Moreover, the reanalyses show inconsistent long-term behaviour when compared with each other. Only in the latter half of the 20th century, the variability of reanalysed and observed storminess time series starts to agree with each other. Additionally, 20CRv3, the most recent centennial reanalysis examined, shows markedly improved results with increased uncertainty, albeit multidecadal storminess variability does not match observed values in earlier times before about 1920.</p><p>The behaviour shown by the centennial reanalyses are likely caused by the increasing number of assimilated observations, changes in the observational databases used, and the different underlying numerical model systems. Furthermore, the results derived from the ERA-20cm reanalysis that does not assimilate any pressure or wind observations suggests that the variability and uncertainty of storminess over the northeast Atlantic is high making it difficult to determine storm activity when numerical models are not bound by observations. The results of this study imply and reconfirm previous findings that the assessment of long-term storminess trends and variability in centennial reanalyses remains a rather delicate matter, at least for the northeast Atlantic region.</p>


2011 ◽  
Vol 24 (18) ◽  
pp. 4831-4843 ◽  
Author(s):  
P. Jonathan Gero ◽  
David D. Turner

Abstract A trend analysis was applied to a 14-yr time series of downwelling spectral infrared radiance observations from the Atmospheric Emitted Radiance Interferometer (AERI) located at the Atmospheric Radiation Measurement Program (ARM) site in the U.S. Southern Great Plains. The highly accurate calibration of the AERI instrument, performed every 10 min, ensures that any statistically significant trend in the observed data over this time can be attributed to changes in the atmospheric properties and composition, and not to changes in the sensitivity or responsivity of the instrument. The measured infrared spectra, numbering more than 800 000, were classified as clear-sky, thin cloud, and thick cloud scenes using a neural network method. The AERI data record demonstrates that the downwelling infrared radiance is decreasing over this 14-yr period in the winter, summer, and autumn seasons but it is increasing in the spring; these trends are statistically significant and are primarily due to long-term change in the cloudiness above the site. The AERI data also show many statistically significant trends on annual, seasonal, and diurnal time scales, with different trend signatures identified in the separate scene classifications. Given the decadal time span of the dataset, effects from natural variability should be considered in drawing broader conclusions. Nevertheless, this dataset has high value owing to the ability to infer possible mechanisms for any trends from the observations themselves and to test the performance of climate models.


2017 ◽  
Author(s):  
Wanyun Xu ◽  
Xiaobin Xu ◽  
Meiyun Lin ◽  
Weili Lin ◽  
Jie Tang ◽  
...  

Abstract. Interannual variability and long-term trends of tropospheric ozone are both of environmental and climate concerns. Ozone measured at Mt. Waliguan Observatory (WLG, 3816 m asl) on the Tibetan Plateau over the period 19947ndash;2013 has increased significantly by 0.2–0.3 ppbv year-1 during spring and autumn, but shows a much smaller trend in winter and no significant trend in summer. Here we explore the factors driving the observed ozone changes at WLG using backward trajectory analysis, chemistry-climate model hindcast simulations (GFDL-AM3), a trajectory-mapped ozonesonde dataset and various climate indices. A stratospheric ozone tracer implemented in GFDL-AM3 indicates that stratosphere-to-troposphere transport (STT) can explain ~ 70 % of the observed springtime ozone increase at WLG, consistent with an increase in the NW air mass frequency inferred from the trajectory analysis. Enhanced STT associated with the strengthening of the mid-latitude jet stream contributes to the observed high-ozone anomalies at WLG during the springs of 1999 and 2012. During autumn, observations at WLG are more heavily influenced by polluted air masses originated from Southeast Asia than in the other seasons. Rising Asian anthropogenic emissions of ozone precursors is the key driver of increasing autumnal ozone observed at WLG, as supported by the GFDL-AM3 model with time-varying emissions, which captures the observed ozone increase (0.26 ± 0.11 ppbv year-1). AM3 simulates a greater ozone increase of 0.38 ± 0.11 ppbv year-1 at WLG in autumn under conditions with strong transport from Southeast Asia and shows no significant ozone trend in autumn when anthropogenic emissions are held constant in time. During summer, WLG is mostly influenced by easterly air masses but these trajectories do not extend to the polluted regions of eastern China and have decreased significantly over the last two decades, which likely explains why summertime ozone measured at WLG shows no significant trend despite ozone increases in Eastern China. Analysis of the Trajectory-mapped Ozonesonde dataset for the Stratosphere and Troposphere (TOST) and trajectory residence time reveals increases in direct ozone transport from the eastern sector during autumn, which adds to the autumnal ozone increase. We further examine the links of ozone variability at WLG to the QBO, the North Atlantic Oscillation (NAO), the East Asian summer monsoon (EASM) and the sunspot cycle. Our results suggest that the 2–3 year, 3–7 year and 11 year periodicities are linked to QBO, EASMI and NAO and the sunspot cycle, respectively. A multivariate regression analysis is performed to quantify the relative contributions of various factors to surface ozone concentrations at WLG. Through an observational and modelling analysis, this study demonstrates the complex relationships between surface ozone at remote locations and its dynamical and chemical influencing factors.


2008 ◽  
Vol 8 (10) ◽  
pp. 2595-2607 ◽  
Author(s):  
X. Xu ◽  
W. Lin ◽  
T. Wang ◽  
P. Yan ◽  
J. Tang ◽  
...  

Abstract. Information about the long-term trends of surface and tropospheric ozone is important for assessing the impact of ozone on human health, vegetation, and climate. Long-term measurements from East Asia, especially China's eastern provinces, are urgently needed to evaluate potential changes of tropospheric ozone over this economically rapid developing region. In this paper, surface ozone data from the Linan Regional Background Station in eastern China are analyzed and results about the long-term trends of surface ozone at the station are presented. Surface ozone data were collected at Linan during 6 periods between August 1991 and July 2006. The seasonality and the long-term changes of surface ozone at the site are discussed, with focus on changes in the diurnal variations, the extreme values, and the ozone distribution. Some long-term trends of surface ozone, e.g. decrease in the average concentration, increase in the daily amplitude of the relative diurnal variations, increase in the monthly highest 5% of the ozone concentration, decrease in the monthly lowest 5% of the ozone concentration, increase in the frequencies at the high and low ends of the ozone distribution have been uncovered by the analysis. All the trends indicate that the variability of surface ozone has been enhanced. Possible causes for the observed trends are discussed. The most likely cause is believed to be the increase of NOx concentration.


Sign in / Sign up

Export Citation Format

Share Document