scholarly journals Long-term trends of surface ozone and its influencing factors at the Mt. Waliguan GAW station, China – Part 1: Overall trends and characteristics

2015 ◽  
Vol 15 (21) ◽  
pp. 30987-31024 ◽  
Author(s):  
W. Y. Xu ◽  
W. L. Lin ◽  
X. B. Xu ◽  
J. Tang ◽  
J. Q. Huang ◽  
...  

Abstract. Tropospheric ozone is an important atmospheric oxidant, greenhouse gas and atmospheric pollutant at the same time. The level of tropospheric ozone, particularly in the surface layer, is impacted by emissions of precursors and is subjected to meteorological conditions. Due its importance, the long-term variation trend of baseline ozone is highly needed for environmental and climate change assessment. So far, studies about the long-term trends of ozone at representative sites are mainly available for European and North American sites. Similar studies are lacking for China, a country with rapid economic growth for recent decades, and many other developing countries. To uncover the long-term characteristics and trends of baseline surface ozone, concentration in western China, measurements at a global baseline Global Atmospheric Watch (GAW) station in the north-eastern Tibetan Plateau region (Mt. Waliguan) for the period of 1994 to 2013 were analysed in this study, using a modified Mann–Kendall test and the Hilbert–Huang Transform analysis for the trend and periodicity analysis, respectively. Results reveal higher surface ozone during the night and lower during the day at Waliguan, due to mountain-valley breezes. A seasonal maximum in summer was found, which was probably caused by enhanced stratosphere-to-troposphere exchange events and/or by tropospheric photochemistry. Analysis suggests that there is a season-diurnal cycle in the three-dimensional winds on top of Mt. Waliguan. Season-dependent daytime and nighttime ranges of 6 h were determined based on the season-diurnal cycle in the three-dimensional winds and were used to sort subsets of ozone data for trend analysis. Significant increasing trends in surface ozone were detected for both daytime (1.5–2.7 ppbv 10 a−1) and nighttime (1.3–2.9 ppbv 10 a−1). Autumn and spring revealed the largest increase rates, while summer and winter showed relatively weaker increases. The HHT spectral analysis confirmed the increasing trends in surface ozone concentration and could further identify four different stages with different increasing rates, with the largest increase occurring around May 2000 and October 2010. A 2–4, 7 and 11 year periodicity was found in the surface ozone concentration. The results are highly valuable for related climate and environment change assessments of western China and surrounding areas, and for the validation of chemical-climate models.

2008 ◽  
Vol 8 (10) ◽  
pp. 2595-2607 ◽  
Author(s):  
X. Xu ◽  
W. Lin ◽  
T. Wang ◽  
P. Yan ◽  
J. Tang ◽  
...  

Abstract. Information about the long-term trends of surface and tropospheric ozone is important for assessing the impact of ozone on human health, vegetation, and climate. Long-term measurements from East Asia, especially China's eastern provinces, are urgently needed to evaluate potential changes of tropospheric ozone over this economically rapid developing region. In this paper, surface ozone data from the Linan Regional Background Station in eastern China are analyzed and results about the long-term trends of surface ozone at the station are presented. Surface ozone data were collected at Linan during 6 periods between August 1991 and July 2006. The seasonality and the long-term changes of surface ozone at the site are discussed, with focus on changes in the diurnal variations, the extreme values, and the ozone distribution. Some long-term trends of surface ozone, e.g. decrease in the average concentration, increase in the daily amplitude of the relative diurnal variations, increase in the monthly highest 5% of the ozone concentration, decrease in the monthly lowest 5% of the ozone concentration, increase in the frequencies at the high and low ends of the ozone distribution have been uncovered by the analysis. All the trends indicate that the variability of surface ozone has been enhanced. Possible causes for the observed trends are discussed. The most likely cause is believed to be the increase of NOx concentration.


2008 ◽  
Vol 8 (1) ◽  
pp. 215-243 ◽  
Author(s):  
X. Xu ◽  
W. Lin ◽  
T. Wang ◽  
P. Yan ◽  
J. Tang ◽  
...  

Abstract. Information about the long-term trends of surface and tropospheric ozone is important for assessing the impact of ozone on human health, vegetation, and climate. Long-term measurements from East Asia, especially China's eastern provinces, are urgently needed to evaluate potential changes of tropospheric ozone over this economically rapid developing region. In this paper, surface ozone data from the Linan Regional Background Station in eastern China are analyzed and results about the long-term trends of surface ozone at the station are presented. Surface ozone data were collected at Linan during 6 periods between August 1991 and July 2006. The seasonality and the long-term changes of surface ozone at the site are discussed, with focus on changes in the diurnal variations, the extreme values, and the ozone distribution. Some long-term trends of surface ozone, e.g., decrease in the average concentration, increase in the daily amplitude of the relative diurnal variations, increase in the monthly highest 5% of the ozone concentration, decrease in the monthly lowest 5% of the ozone concentration, increase in the frequencies at the high and low ends of the ozone distribution have been uncovered by the analysis. All the trends indicate that the variability of surface ozone has been enhanced. Possible causes for the observed trends are discussed. The most likely cause is believed to be the increase of NOx concentration.


2020 ◽  
Author(s):  
Igor V. Ptashnik ◽  
Boris D. Belan ◽  
Denis E. Savkin ◽  
Gennadii N. Tolmachev ◽  
Tatayana K. Sklyadneva ◽  
...  

<p>In the review compiled by Monks et al. (2015), it is noted that the main variations in the tropospheric ozone are determined by the exchange between the troposphere and the stratosphere, in-situ photochemical production from gaseous precursors depending on their composition and concentration, solar radiation income, and meteorological conditions. The impact of precipitation on the surface ozone concentration is a less well-studied factor.</p><p>The process of ozone interaction with precipitation was studied theoretically (Heicklen, 1982). Two ways of the above process were analyzed: adsorption of gas molecules on the surface of a particle and a chemical reaction with its surface. There are no direct data on the verification of these findings in the literature. At the same time, there is some evidence of a possible link between precipitation and ozone.</p><p>This study is aimed to analyze the presence or absence of changes in the ozone concentration during precipitation. Variations of the surface ozone concentration (SOC) in the presence of precipitation were analyzed using the long-term data obtained at the TOR-station established in 1992 for ozone monitoring in Tomsk. It was revealed that these changes can be both positive (increase in concentration) and negative. The sharp changes in the SOC are observed when frontal precipitation takes place. In the presence of air-mass precipitation, the sign and magnitude of the change is determined by the diurnal variation of ozone concentration.</p><p>The analysis showed a coincidence of the SOC growth during precipitation with its increase in diurnal variation in 59% of cases. The coincidence in the wave of the concentration decline in the diurnal variation with decreasing precipitation rate is even higher and amounts to 85%.</p><p>Airborne sounding carried out in the vicinity of the TOR-station shown that in a number of cases the ozone deposition from the boundary layer is observed upon the transition of thermal stratification during the precipitation to neutral.</p><p> </p><p>Monks P. S, Archibald A. T., Colette A., Cooper O., Coyle M., Derwent R., Fowler D., Granier C., Law K. S., Mills G. E., Stevenson D. S., Tarasova O., Thouret V., von Schneidemesser E., Sommariva R., Wild O., Williams M. L. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys., 2015, v.15, N15, p.8889–8973.</p><p>Heicklen J. The Removal of Atmospheric Gases by Particulate Matter. In Heterogeneous Atmospheric Chemistry, ed. D. R. Schryer, Geophysical Monograph 26. American Geophysical Union, Washington, DC, USA, 1982, p. 93-98.</p>


2016 ◽  
Vol 16 (10) ◽  
pp. 6191-6205 ◽  
Author(s):  
Wanyun Xu ◽  
Weili Lin ◽  
Xiaobin Xu ◽  
Jie Tang ◽  
Jianqing Huang ◽  
...  

Abstract. Tropospheric ozone is an important atmospheric oxidant, greenhouse gas and atmospheric pollutant at the same time. The oxidation capacity of the atmosphere, climate, human and vegetation health can be impacted by the increase of the ozone level. Therefore, long-term determination of trends of baseline ozone is highly needed information for environmental and climate change assessment. So far, studies on the long-term trends of ozone at representative sites are mainly available for European and North American sites. Similar studies are lacking for China and many other developing countries. Measurements of surface ozone were carried out at a baseline Global Atmospheric Watch (GAW) station in the north-eastern Tibetan Plateau region (Mt Waliguan, 36°17′ N, 100°54′ E, 3816 m a.s.l.) for the period of 1994 to 2013. To uncover the variation characteristics, long-term trends and influencing factors of surface ozone at this remote site in western China, a two-part study has been carried out, with this part focusing on the overall characteristics of diurnal, seasonal and long-term variations and the trends of surface ozone. To obtain reliable ozone trends, we performed the Mann–Kendall trend test and the Hilbert–Huang transform (HHT) analysis on the ozone data. Our results confirm that the mountain-valley breeze plays an important role in the diurnal cycle of surface ozone at Waliguan, resulting in higher ozone values during the night and lower ones during the day, as was previously reported. Systematic diurnal and seasonal variations were found in mountain-valley breezes at the site, which were used in defining season-dependent daytime and nighttime periods for trend calculations. Significant positive trends in surface ozone were detected for both daytime (0.24 ± 0.16 ppbv year−1) and nighttime (0.28 ± 0.17 ppbv year−1). The largest nighttime increasing rate occurred in autumn (0.29 ± 0.11 ppbv year−1), followed by spring (0.24 ± 0.12 ppbv year−1), summer (0.22 ± 0.20 ppbv year−1) and winter (0.13 ± 0.10 ppbv year−1), respectively. The HHT spectral analysis identified four different stages with different positive trends, with the largest increase occurring around May 2000 and October 2010. The HHT results suggest that there were 2–4a, 7a and 11a periodicities in the time series of surface ozone at Waliguan. The results of this study can be used for assessments of climate and environment change and in the validation of chemistry–climate models.


Elem Sci Anth ◽  
2020 ◽  
Vol 8 ◽  
Author(s):  
Xiaobin Xu ◽  
Weili Lin ◽  
Wanyun Xu ◽  
Junli Jin ◽  
Ying Wang ◽  
...  

The first Tropospheric Ozone Assessment Report (TOAR) provides information on present-day distributions and long-term trends of ozone metrics relevant for climate change, human health, and vegetation. However, only few results are available in TOAR for China due to limited long-term ozone observations. Here, we present an integrated analysis of long-term measurements of surface ozone from eight sites distributed in the North China Plain (NCP) and Yangtze River Delta (YRD), the relatively underdeveloped region Northeast China, and the remote regions in Northwest and Southwest China. Trends and present-day values for seven annual and five seasonal ozone metrics were calculated following the TOAR methodologies. We compare the seasonal and diurnal cycles of ozone concentrations as well as the present-day values of ozone among sites and discuss the long-term trends in the ozone metrics. Large and significant increases of ozone are detected at the background site in the NCP, moderate increases at the global baseline site in western China, significant decreases at the northwestern edge of China, and nearly no trend at other sites. Extremely high values of ozone occurred in the NCP and YRD, particularly in warmer seasons. The present-day levels of summer ozone metrics in the NCP are much higher than the thresholds set in TOAR for the highest value groups of ozone metrics. The summer ozone metrics at the Shangdianzi background site in the NCP indicate increases at rates of more than 2%/yr during 2004–2016. In contrast, ozone at the Lin’an background site in the YRD was constant over the period 2006–2016. Our results fill some knowledge gaps in spatiotemporal changes of ozone in China and may be of useful in the assessment of ozone impacts on human health and vegetation.


2006 ◽  
Vol 6 (4) ◽  
pp. 5797-5838 ◽  
Author(s):  
A. M. Aghedo ◽  
M. G. Schultz ◽  
S. Rast

Abstract. We investigate the relative importance of African biomass burning, biogenic volatile organic compounds (VOC), lightning and anthropogenic emissions to the tropospheric ozone budget over Africa and globally using a coupled global chemistry climate model. Our model studies indicate that the photochemical surface ozone concentration may rise by up to 50 ppbv in the burning region during the biomass burning seasons. Biogenic VOCs contribute between 5–20 ppbv to the near surface ozone concentration over the tropical African region. The impact of lightning on surface ozone is negligible, while anthropogenic emissions contribute a maximum of 10 ppbv to the surface ozone over Nigeria, South-Africa and Egypt. The annual average of the surface and column ozone over Africa shows that biomass burning is the single most important emission source affecting the African region, while biogenic emissions have the highest contribution during the rainy seasons. The contributions of African emissions to global tropospheric ozone burden (TOB) are about 9 Tg, 13 Tg, 8 Tg and 4 Tg for African biomass burning, biogenic VOC, lightning and anthropogenic emissions respectively. These correspond to 2.4%, 3.4%, 2.1% and 1% of the global tropospheric ozone budget respectively. Over Africa itself, the contribution of each of these emission types is only 2.4 Tg, 2.2 Tg, 1.4 Tg and 0.8 Tg respectively. Outside the continent, African biogenic VOC emissions yield the highest contribution to the TOB. Our model calculations suggest that about 70% of the tropospheric ozone produced from emissions in Africa is found outside the continent, thus exerting a noticeable influence on a large part of the tropical troposphere. Latin America experiences the highest impact of African emissions, followed by southeast and south-central Asia, Oceania, and the Middle East for all the emission categories; while Canada, the United States, Russia, Mongolia, China and Europe experience the least impact of African emissions.


2007 ◽  
Vol 7 (5) ◽  
pp. 1193-1212 ◽  
Author(s):  
A. M. Aghedo ◽  
M. G. Schultz ◽  
S. Rast

Abstract. We investigate the influence of African biomass burning, biogenic, lightning and anthropogenic emissions on the tropospheric ozone over Africa and globally using a coupled global chemistry climate model. Our model studies indicate that surface ozone concentration may rise by up to 50 ppbv in the burning region during the biomass burning seasons. Biogenic emissions yield between 5–30 ppbv increase in the near surface ozone concentration over tropical Africa. The impact of lightning on surface ozone is negligible, while anthropogenic emissions yield a maximum of 7 ppbv increase in the annual-mean surface ozone concentration over Nigeria, South Africa and Egypt. Our results show that biogenic emissions are the most important African emission source affecting total tropospheric ozone. The influence of each of the African emissions on the global tropospheric ozone burden (TOB) of 384 Tg yields about 9.5 Tg, 19.6 Tg, 9.0 Tg and 4.7 Tg for biomass burning, biogenic, lightning and anthropogenic emissions emitted in Africa respectively. The impact of each of these emission categories on African TOB of 33 Tg is 2.5 Tg, 4.1 Tg, 1.75 Tg and 0.89 Tg respectively, which together represents about 28% of the total TOB calculated over Africa. Our model calculations also suggest that more than 70% of the tropospheric ozone produced by each of the African emissions is found outside the continent, thus exerting a noticeable influence on a large part of the tropical troposphere. Apart from the Atlantic and Indian Ocean, Latin America experiences the largest impact of African emissions, followed by Oceania, the Middle East, Southeast and south-central Asia, northern North America (i.e. the United States and Canada), Europe and north-central Asia, for all the emission categories.


2011 ◽  
Vol 24 (7) ◽  
pp. 1913-1921 ◽  
Author(s):  
Mateus da Silva Teixeira ◽  
Prakki Satyamurty

Abstract A new approach to define heavy and extreme rainfall events based on cluster analysis and area-average rainfall series is presented. The annual frequency of the heavy and extreme rainfall events is obtained for the southeastern and southern Brazil regions. In the 1960–2004 period, 510 (98) and 466 (77) heavy (extreme) rainfall events are identified in the two regions. Monthly distributions of the events closely follow the monthly climatological rainfall in the two regions. In both regions, annual heavy and extreme rainfall event frequencies present increasing trends in the 45-yr period. However, only in southern Brazil is the trend statistically significant. Although longer time series are necessary to ensure the existence of long-term trends, the positive trends are somewhat alarming since they indicate that climate changes, in terms of rainfall regimes, are possibly under way in Brazil.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1498 ◽  
Author(s):  
Solomon Mulugeta ◽  
Clifford Fedler ◽  
Mekonen Ayana

With climate change prevailing around the world, understanding the changes in long-term annual and seasonal rainfall at local scales is very important in planning for required adaptation measures. This is especially true for areas such as the Awash River basin where there is very high dependence on rain- fed agriculture characterized by frequent droughts and subsequent famines. The aim of the study is to analyze long-term trends of annual and seasonal rainfall in the Awash River Basin, Ethiopia. Monthly rainfall data extracted from Climatic Research Unit (CRU 4.01) dataset for 54 grid points representing the entire basin were aggregated to find the respective areal annual and seasonal rainfall time series for the entire basin and its seven sub-basins. The Mann-Kendall (MK) test and Sen Slope estimator were applied to the time series for detecting the trends and for estimating the rate of change, respectively. The Statistical software package R version 3.5.2 was used for data extraction, data analyses, and plotting. Geographic information system (GIS) package was also used for grid making, site selection, and mapping. The results showed that no significant trend (at α = 0.05) was identified in annual rainfall in all sub-basins and over the entire basin in the period (1902 to 2016). However, the results for seasonal rainfall are mixed across the study areas. The summer rainfall (June through September) showed significant decreasing trend (at α ≤ 0.1) over five of the seven sub-basins at a rate varying from 4 to 7.4 mm per decade but it showed no trend over the two sub-basins. The autumn rainfall (October through January) showed no significant trends over four of the seven sub-basins but showed increasing trends over three sub-basins at a rate varying from 2 to 5 mm per decade. The winter rainfall (February through May) showed no significant trends over four sub-basins but showed significant increasing trends (at α ≤ 0.1) over three sub-basins at a rate varying from 0.6 to 2.7 mm per decade. At the basin level, the summer rainfall showed a significant decreasing trend (at α = 0.05) while the autumn and winter rainfall showed no significant trends. In addition, shift in some amount of summer rainfall to winter and autumn season was noticed. It is evident that climate change has shown pronounced effects on the trends and patterns of seasonal rainfall. Thus, the study contribute to better understanding of climate change in the basin and the information from the study can be used in planning for adaptation measures against a changing climate.


Sign in / Sign up

Export Citation Format

Share Document