scholarly journals Conditions for super-adiabatic droplet growth after entrainment mixing

2016 ◽  
Vol 16 (14) ◽  
pp. 9421-9433 ◽  
Author(s):  
Fan Yang ◽  
Raymond Shaw ◽  
Huiwen Xue

Abstract. Cloud droplet response to entrainment and mixing between a cloud and its environment is considered, accounting for subsequent droplet growth during adiabatic ascent following a mixing event. The vertical profile for liquid water mixing ratio after a mixing event is derived analytically, allowing the reduction to be predicted from the mixing fraction and from the temperature and humidity for both the cloud and environment. It is derived for the limit of homogeneous mixing. The expression leads to a critical height above the mixing level: at the critical height the cloud droplet radius is the same for both mixed and unmixed parcels, and the critical height is independent of the updraft velocity and mixing fraction. Cloud droplets in a mixed parcel are larger than in an unmixed parcel above the critical height, which we refer to as the “super-adiabatic” growth region. Analytical results are confirmed with a bin microphysics cloud model. Using the model, we explore the effects of updraft velocity, aerosol source in the environmental air, and polydisperse cloud droplets. Results show that the mixed parcel is more likely to reach the super-adiabatic growth region when the environmental air is humid and clean. It is also confirmed that the analytical predictions are matched by the volume-mean cloud droplet radius for polydisperse size distributions. The findings have implications for the origin of large cloud droplets that may contribute to onset of collision–coalescence in warm clouds.

2016 ◽  
Author(s):  
Fan Yang ◽  
Raymond Shaw ◽  
Huiwen Xue

Abstract. Cloud droplet response to entrainment and mixing between a cloud and its environment is often considered by itself, without accounting for subsequent growth after the mixing event. Here we consider the change in cloud properties when the mixed parcel rises adiabatically after the mixing event. The vertical profile for liquid water mixing ratio after a mixing event is derived analytically, allowing the reduction due to mixing to be predicted from the mixing fraction and the cloud and environment temperature and humidity. It is derived for the limit of homogeneous mixing. The expression leads to a critical height above the mixing level: At the critical height the cloud droplet radius is the same for both mixed and unmixed parcels, and the critical height is independent of the updraft velocity and mixing fraction. Cloud droplets in a mixed parcel are larger than in an unmixed parcel above the critical height, which we refer to as the "super-adiabatic" growth region. Analytical results are confirmed by a bin microphysics cloud model. Using the model, we explore the effects of updraft velocity, aerosol source in the environmental air, and polydisperse cloud droplets. Results show that the mixing parcel is more likely to reach the super-adiabatic growth region when the environmental air is humid and clean. It is also confirmed that the analytical predictions are matched by the volume-mean cloud droplet radius under polydisperse conditions. The findings have implications for the origin of large cloud droplets that may contribute to onset of collision-coalescence in warm clouds.


2005 ◽  
Vol 5 (9) ◽  
pp. 2561-2570 ◽  
Author(s):  
H. Korhonen ◽  
V.-M. Kerminen ◽  
K. E. J. Lehtinen ◽  
M. Kulmala

Abstract. We investigate the influence of low size resolution, typical to sectional aerosol models in large scale applications, on cloud droplet activation and cloud processing of aerosol particles. A simplified cloud model with five approaches to determine the fraction of activated particles is compared with a detailed reference model under different atmospheric conditions. In general, activation approaches which assume a distribution profile within the critical model size sections predict the cloud droplet concentration most accurately under clean and moderately polluted conditions. In such cases, the deviation from the reference simulations is below 15% except for very low updraft velocities. In highly polluted cases, the concentration of cloud droplets is significantly overestimated due to the inability of the simplified model to account for the kinetic limitations of the droplet growth. Of the profiles examined, taking into account the local shape of the particle size distribution is the most accurate although in most cases the shape of the profile has little relevance. While the low resolution cloud model cannot reproduce the details of the out-of-the-cloud aerosol size distribution, it captures well the amount of sulphate produced in aqueous-phase reactions as well as the distribution of the sulphate between the cloud droplets. Overall, the simplified cloud model with low size resolution performs well for clean and moderately polluted regions that cover most of the Earth's surface and is therefore suitable for large scale models. It can, however, show uncertainties in areas with strong pollution from anthropogenic sources.


2005 ◽  
Vol 5 (4) ◽  
pp. 4871-4892
Author(s):  
H. Korhonen ◽  
V.-M. Kerminen ◽  
K. E. J. Lehtinen ◽  
M. Kulmala

Abstract. We investigate the influence of low size resolution, typical to sectional aerosol models in large scale applications, on cloud droplet activation and cloud processing of aerosol particles. A simplified cloud scheme with five approaches to determine the fraction of activated particles is compared with a detailed reference model under different atmospheric conditions. In general, activation approaches which assume a distribution profile within the critical model size sections predict the cloud droplet concentration most accurately under clean and moderately polluted conditions. In such cases, the deviation from the reference simulations is below 15% except for very low updraft velocities. In highly polluted cases, the concentration of cloud droplets is significantly overestimated due to the inability of the simplified scheme to account for the kinetic limitations of the droplet growth. Of the profiles examined, taking into account the local shape of the particle size distribution is the most accurate although in most cases the shape of the profile has little relevance. While the low resolution cloud model cannot reproduce the details of the out-of-the-cloud aerosol size distribution, it captures well the amount of sulphate produced in aqueous-phase reactions as well as the distribution of the sulphate between the cloud droplets. Overall, the simplified cloud scheme with low size resolution performs well for clean and moderately polluted regions that cover most of the Earth's surface and is therefore suitable for large scale models.


2010 ◽  
Vol 67 (4) ◽  
pp. 1126-1141 ◽  
Author(s):  
Kentaroh Suzuki ◽  
Teruyuki Nakajima ◽  
Takashi Y. Nakajima ◽  
Alexander P. Khain

Abstract This study investigates the correlation patterns between cloud droplet effective radius (CDR) and cloud optical thickness (COT) of warm clouds with a nonhydrostatic spectral bin microphysics cloud model. Numerical experiments are performed with the model to simulate low-level warm clouds. The results show a positive and negative correlation pattern between CDR and COT for nondrizzling and drizzling stages of cloud development, respectively, consistent with findings of previous observational studies. Only a positive correlation is simulated when the collection process is switched off in the experiment, whereas both the positive and negative correlations are reproduced in the simulation with collection as well as condensation processes. The positive and negative correlations can also be explained in terms of an evolution pattern of the size distribution function due to condensation and collection processes, respectively. Sensitivity experiments are also performed to examine how the CDR–COT correlation patterns are influenced by dynamical and aerosol conditions. The dynamical effect tends to change the amplitude of the CDR–COT plot mainly through changing the liquid water path, whereas the aerosol amount significantly modifies the correlation pattern between CDR and COT mainly through changing the cloud particle number concentration. These results suggest that the satellite-observed relationships between CDR and COT can be interpreted as being formed through microphysical particle growth processes under various dynamical and aerosol conditions in the real atmosphere.


2012 ◽  
Vol 69 (2) ◽  
pp. 484-503 ◽  
Author(s):  
Yousuke Sato ◽  
Kentaroh Suzuki ◽  
Takamichi Iguchi ◽  
In-Jin Choi ◽  
Hiroyuki Kadowaki ◽  
...  

Abstract Three-dimensional downscaling simulations using a spectral bin microphysics (SBM) model were conducted to investigate the effects of aerosol amount and dynamical stabilities of the atmosphere on the correlation statistics between cloud droplet effective radius (RE) and cloud optical thickness (COT) of warm clouds off the coast of California. The regeneration process of aerosols was implemented into the SBM and was found to be necessary for simulating the satellite-observed microphysical properties of warm clouds by the SBM model used in this study. The results showed that the aerosol amount changed the correlation statistics in a way that changes the cloud particle number concentration, whereas the inversion height of the boundary layer, which is related to the atmospheric stability and the cloud-top height, changed the correlation statistics in a way that changes the liquid water path. These results showed that the dominant mechanisms that control the correlation statistics are similar to those suggested by previous modeling studies based on two-dimensional idealized simulations. On the other hand, the present three-dimensional modeling was also able to simulate some realistic patterns of the correlation statistics, namely, mixtures of characteristic patterns and the “high-heeled” pattern as observed by satellite remote sensing.


2016 ◽  
Vol 113 (50) ◽  
pp. 14243-14248 ◽  
Author(s):  
Kamal Kant Chandrakar ◽  
Will Cantrell ◽  
Kelken Chang ◽  
David Ciochetto ◽  
Dennis Niedermeier ◽  
...  

The influence of aerosol concentration on the cloud-droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud-droplet growth and fallout. As aerosol concentration is increased, the cloud-droplet mean diameter decreases, as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τc<τt) for high aerosol concentration, and slow microphysics (τc>τt) for low aerosol concentration; here, τc is the phase-relaxation time and τt is the turbulence-correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τs−1=τc−1+τt−1, and the measurements are in excellent agreement with this finding. The result underscores the importance of droplet size dispersion for aerosol indirect effects: increasing aerosol concentration changes the albedo and suppresses precipitation formation not only through reduction of the mean droplet diameter but also by narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol/slow microphysics limit are likely of leading importance for precipitation formation.


2017 ◽  
Vol 17 (13) ◽  
pp. 8343-8356 ◽  
Author(s):  
Fabian Hoffmann

Abstract. Activation is necessary to form a cloud droplet from an aerosol, and it is widely accepted that it occurs as soon as a wetted aerosol grows beyond its critical radius. Traditional Köhler theory assumes that this growth is driven by the diffusion of water vapor. However, if the wetted aerosols are large enough, the coalescence of two or more particles is an additional process for accumulating sufficient water for activation. This transition from diffusional to collectional growth marks the limit of traditional Köhler theory and it is studied using a Lagrangian cloud model in which aerosols and cloud droplets are represented by individually simulated particles within large-eddy simulations of shallow cumuli. It is shown that the activation of aerosols larger than 0. 1 µm in dry radius can be affected by collision and coalescence, and its contribution increases with a power-law relation toward larger radii and becomes the only process for the activation of aerosols larger than 0. 4–0. 8 µm depending on aerosol concentration. Due to the natural scarcity of the affected aerosols, the amount of aerosols that are activated by collection is small, with a maximum of 1 in 10 000 activations. The fraction increases as the aerosol concentration increases, but decreases again as the number of aerosols becomes too high and the particles too small to cause collections. Moreover, activation by collection is found to affect primarily aerosols that have been entrained above the cloud base.


2010 ◽  
Vol 67 (6) ◽  
pp. 1897-1907 ◽  
Author(s):  
Takashi Y. Nakajima ◽  
Kentaroh Suzuki ◽  
Graeme L. Stephens

Abstract Hydrometeor droplet growth processes are inferred from a combination of Aqua/Moderate Resolution Imaging Spectroradiometer (MODIS) cloud particle size observations and CloudSat/Cloud Profiling Radar (CPR) observations of warm water clouds. This study supports the inferences of a related paper (Part I) (i) that MODIS-retrieved cloud droplet radii (CDR) from the 3.7-μm channel (R37) are influenced by the existence of small droplets at cloud top and (ii) that the CDR obtained from 1.6- (R16) and 2.1-μm (R21) channels contain information about drizzle droplets deeper into the cloud as well as cloud droplets. This interpretation is shown to be consistent with radar reflectivities when matched to CDR that were retrieved from MODIS data. This study demonstrates that the droplet growth process from cloud to rain via drizzle proceeds monotonically with the evolution of R16 or R21 from small cloud drops (on the order of 10–12 μm) to drizzle (CDR greater than 14 μm) to rain (CDR greater than 20 μm). Thus, R16 or R21 is an indicator of hydrometeor droplet growth processes whereas R37 does not contain information about coalescence. A new composite analysis, the contoured frequency diagram, is introduced to combine CloudSat/CPR reflectivity profiles and reveals a distinct trimodal population of reflectivities corresponding to cloud, drizzle, and rain modes.


2012 ◽  
Vol 12 (24) ◽  
pp. 12155-12164 ◽  
Author(s):  
J. Sun ◽  
H. Leighton ◽  
M. K. Yau ◽  
P. Ariya

Abstract. Cumulus clouds have long been recognized as being the results of ascending moist air from below the cloud base. Cloud droplet nucleation is understood to take place near the cloud base and inside accelerating rising cloudy air. Here we describe circumstances under which cloud droplet nucleation takes place at the interface of ascending cloudy air and clear air. Evaporation is normally expected to occur at this interface. However, continuity of moving air requires cloud-free air above the boundary of rising cloudy air to move upwards in response to the gradient force of perturbation pressure. We used a one and half dimensional non-hydrostatic cloud model and the Weather Research and Forecast model to investigate the impacts of this force on the evolution of cloud spectra. Our study shows that expansion and cooling of ascending moist air above the cloud top causes it to become supersaturated with condensation rather than evaporation occurring at the interface. We also confirm that Eulerian models can describe the cloud droplet activation and prohibit spurious activation at this interface. The continuous feeding of newly activated cloud droplets at the cloud summit may accelerate warm rain formation.


2020 ◽  
Author(s):  
Piotr Dziekan ◽  
Jorgen Jensen ◽  
Wojciech Grabowski ◽  
Hanna Pawłowska

&lt;p&gt;Sea-salt aerosols with radii exceeding 1 &amp;#956;m have been observed over the oceans. Cloud droplets formed on these giant aerosols can quickly grow to drizzle sizes through condensation of water vapor. Therefore giant aerosols, although not numerous, have been speculated to increase the amount of precipitation produced in clouds. Testing this hypothesis in LES simulations has been difficult, because Eulerian microphysics models are not well suited to model growth of droplets on giant aerosols. On the contrary, Lagrangian microphysics models, which are an emerging alternative to the Eulerian bin microphysics models, can model giant aerosols in a straightforward manner.&lt;/p&gt;&lt;p&gt;LES simulations performed using the University of Warsaw Lagrangian Cloud Model (UWLCM) will be presented. In UWLCM, the Lagrangian super-droplet microphysics model is used. We will assess how giant aerosols affect precipitation formation in marine cumulus (setup based on the RICO campaign) and stratocumulus clouds (setup based on the research flight 2 of the DYCOMS campaign). It will be discussed how the impact of giant aerosols changes with the concentrations of giant and regular aerosols. The results are of importance also for cloud seeding experiments, in which giant sea-salt aerosols can be released into a cloud.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document