scholarly journals Directional, horizontal inhomogeneities of cloud optical thickness fields retrieved from ground-based and airbornespectral imaging

2017 ◽  
Vol 17 (3) ◽  
pp. 2359-2372 ◽  
Author(s):  
Michael Schäfer ◽  
Eike Bierwirth ◽  
André Ehrlich ◽  
Evelyn Jäkel ◽  
Frank Werner ◽  
...  

Abstract. Clouds exhibit distinct horizontal inhomogeneities of their optical and microphysical properties, which complicate their realistic representation in weather and climate models. In order to investigate the horizontal structure of cloud inhomogeneities, 2-D horizontal fields of optical thickness (τ) of subtropical cirrus and Arctic stratus are investigated with a spatial resolution of less than 10 m. The 2-D τ-fields are derived from (a) downward (transmitted) solar spectral radiance measurements from the ground beneath four subtropical cirrus and (b) upward (reflected) radiances measured from aircraft above 10 Arctic stratus. The data were collected during two field campaigns: (a) Clouds, Aerosol, Radiation, and tuRbulence in the trade wind regime over BArbados (CARRIBA) and (b) VERtical Distribution of Ice in Arctic clouds (VERDI). One-dimensional and 2-D autocorrelation functions, as well as power spectral densities, are derived from the retrieved τ-fields. The typical spatial scale of cloud inhomogeneities is quantified for each cloud case. Similarly, the scales at which 3-D radiative effects influence the radiance field are identified. In most of the investigated cloud cases considerable cloud inhomogeneities with a prevailing directional structure are found. In these cases, the cloud inhomogeneities favour a specific horizontal direction, while across this direction the cloud is of homogeneous character. The investigations reveal that it is not sufficient to quantify horizontal cloud inhomogeneities using 1-D inhomogeneity parameters; 2-D parameters are necessary.

2016 ◽  
Author(s):  
Michael Schäfer ◽  
Eike Bierwirth ◽  
André Ehrlich ◽  
Evelyn Jäkel ◽  
Frank Werner ◽  
...  

Abstract. Clouds exhibit significant horizontal inhomogeneities of their optical and microphysical properties, which complicate their realistic representation in weather and climate models. In order to investigate the directional, horizontal structure of cloud inhomogeneities, two-dimensional (2D) horizontal fields of optical thickness of subtropical cirrus and Arctic stratus with a spatial resolution of


2014 ◽  
Vol 7 (11) ◽  
pp. 3873-3890 ◽  
Author(s):  
C. K. Carbajal Henken ◽  
R. Lindstrot ◽  
R. Preusker ◽  
J. Fischer

Abstract. A newly developed daytime cloud property retrieval algorithm, FAME-C (Freie Universität Berlin AATSR MERIS Cloud), is presented. Synergistic observations from the Advanced Along-Track Scanning Radiometer (AATSR) and the Medium Resolution Imaging Spectrometer (MERIS), both mounted on the polar-orbiting Environmental Satellite (Envisat), are used for cloud screening. For cloudy pixels two main steps are carried out in a sequential form. First, a cloud optical and microphysical property retrieval is performed using an AATSR near-infrared and visible channel. Cloud phase, cloud optical thickness, and effective radius are retrieved, and subsequently cloud water path is computed. Second, two cloud top height products are retrieved based on independent techniques. For cloud top temperature, measurements in the AATSR infrared channels are used, while for cloud top pressure, measurements in the MERIS oxygen-A absorption channel are used. Results from the cloud optical and microphysical property retrieval serve as input for the two cloud top height retrievals. Introduced here are the AATSR and MERIS forward models and auxiliary data needed in FAME-C. Also, the optimal estimation method, which provides uncertainty estimates of the retrieved property on a pixel basis, is presented. Within the frame of the European Space Agency (ESA) Climate Change Initiative (CCI) project, the first global cloud property retrievals have been conducted for the years 2007–2009. For this time period, verification efforts are presented, comparing, for four selected regions around the globe, FAME-C cloud optical and microphysical properties to cloud optical and microphysical properties derived from measurements of the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite. The results show a reasonable agreement between the cloud optical and microphysical property retrievals. Biases are generally smallest for marine stratocumulus clouds: −0.28, 0.41 μm and −0.18 g m−2 for cloud optical thickness, effective radius and cloud water path, respectively. This is also true for the root-mean-square deviation. Furthermore, both cloud top height products are compared to cloud top heights derived from ground-based cloud radars located at several Atmospheric Radiation Measurement (ARM) sites. FAME-C mostly shows an underestimation of cloud top heights when compared to radar observations. The lowest bias of −0.3 km is found for AATSR cloud top heights for single-layer clouds, while the highest bias of −3.0 km is found for AATSR cloud top heights for multilayer clouds. Variability is low for MERIS cloud top heights for low-level clouds, and high for MERIS cloud top heights for mid-level and high-level single-layer clouds, as well as for both AATSR and MERIS cloud top heights for multilayer clouds.


2013 ◽  
Vol 6 (1) ◽  
pp. 1201-1238 ◽  
Author(s):  
M. Schäfer ◽  
E. Bierwirth ◽  
A. Ehrlich ◽  
F. Heyner ◽  
M. Wendisch

Abstract. A ground-based hyperspectral imaging spectrometer (AisaEAGLE) is applied to measure downward spectral radiance fields with high spatial (1024 spatial pixels within 36.7° field of view), spectral (488 spectral pixels, 400–970 nm, 1.25 nm full width at half maximum) and temporal (4–30 Hz) resolution. The calibration, measurement, and data evaluation procedures are introduced. A method is presented to retrieve the cirrus optical thickness τci using ground-based spectral radiance data collected by AisaEAGLE. On the basis of four measurement cases during the second campaign of the Cloud Aerosol Radiation and tuRbulence of trade wInd cumuli over BArbados (CARRIBA) project in 2011 the spatial inhomogeneity of the investigated cirrus is characterized by the standard deviation of the retrieved τci, as well as the width of the frequency distribution of the retrieved τci. By comparing measured and simulated downward solar radiance as a function of scattering angle, a first estimation of the detected cirrus ice crystal shape is given and used in the retrieval of the τci. The sensitivity of the retrieval method with respect to surface albedo, effective radius reff, cloud height, and ice crystal shape was characterized. Significant sensitivities of the retrieval method were found for the assumed surface albedo (up to 30%) and ice crystal shape (up to 90%). The sensitivity with regard to the effective radius (≤ 5%) and the cloud height (≤ 0.5%) is rather small and can be neglected.


2013 ◽  
Vol 6 (8) ◽  
pp. 1855-1868 ◽  
Author(s):  
M. Schäfer ◽  
E. Bierwirth ◽  
A. Ehrlich ◽  
F. Heyner ◽  
M. Wendisch

Abstract. A ground-based hyperspectral imaging spectrometer (AisaEAGLE, manufactured by Specim Ltd., Finland) is applied to measure downward spectral radiance fields with high spatial (1024 spatial pixels within 36.7° field of view), spectral (488 spectral pixels, 400–970 nm, 1.25 nm full width at half maximum), and temporal (4–30 Hz) resolution. The calibration, measurement and data evaluation procedures are introduced. A new method is presented to retrieve the cirrus optical thickness (τci) using the spectral radiance data collected by AisaEAGLE. The data were collected during the Cloud Aerosol Radiation and tuRbulence of trade wInd cumuli over BArbados (CARRIBA) project in 2011. The spatial inhomogeneity of the investigated cirrus is characterised by the standard deviation of the retrieved τci as well as the width of its frequency distribution. By comparing measured and simulated downward solar spectral radiance as a function of scattering angle, some evidence of the prevailing cirrus ice crystal shape can be obtained and subsequently used to substantiate the retrieval of τci. The sensitivity of the retrieval method with respect to surface albedo, effective radius (reff), cloud height and ice crystal shape is quantified. An enhanced sensitivity of the retrieved τci is found with respect to the surface albedo (up to 30%) and ice crystal shape (up to 90%). The sensitivity with regard to the effective ice crystal radius (≤ 5%) and the cloud height (≤ 0.5%) is rather small and can be neglected.


2013 ◽  
Vol 6 (5) ◽  
pp. 1189-1200 ◽  
Author(s):  
E. Bierwirth ◽  
A. Ehrlich ◽  
M. Wendisch ◽  
J.-F. Gayet ◽  
C. Gourbeyre ◽  
...  

Abstract. Arctic boundary-layer clouds in the vicinity of Svalbard (78° N, 15° E) were observed with airborne remote sensing and in situ methods. The cloud optical thickness and the droplet effective radius are retrieved from spectral radiance data from the nadir spot (1.5°, 350–2100 nm) and from a nadir-centred image (40°, 400–1000 nm). Two approaches are used for the nadir retrieval, combining the signal from either two or five wavelengths. Two wavelengths are found to be sufficient for an accurate retrieval of the cloud optical thickness, while the retrieval of droplet effective radius is more sensitive to the number of wavelengths. Even with the comparison to in-situ data, it is not possible to definitely answer the question which method is better. This is due to unavoidable time delays between the in-situ measurements and the remote-sensing observations, and to the scarcity of vertical in-situ profiles within the cloud.


2012 ◽  
Vol 5 (5) ◽  
pp. 7753-7781 ◽  
Author(s):  
E. Bierwirth ◽  
A. Ehrlich ◽  
M. Wendisch ◽  
J.-F. Gayet ◽  
C. Gourbeyre ◽  
...  

Abstract. Arctic boundary-layer clouds in the vicinity of Svalbard (78° N, 15° E) were observed with airborne remote sensing and in situ methods. The cloud optical thickness and the droplet effective radius are retrieved from spectral radiance data in nadir and and from hyperspectral radiances in a 40° field of view. Two approaches are used for the spectral retrieval, combining the signal from either two or five wavelengths. Two wavelengths are found to be sufficient for an accurate retrieval of the cloud optical thickness, while the retrieval of droplet effective radius is more sensitive to the method applied. The comparison to in situ data cannot give a definite answer as to which method is better because of unavoidable time delays between the in situ measurements and the remote-sensing observations.


2014 ◽  
Vol 14 (4) ◽  
pp. 1943-1958 ◽  
Author(s):  
C. Fricke ◽  
A. Ehrlich ◽  
E. Jäkel ◽  
B. Bohn ◽  
M. Wirth ◽  
...  

Abstract. Airborne measurements of solar spectral radiance reflected by cirrus are performed with the HALO-Solar Radiation (HALO-SR) instrument onboard the High Altitude and Long Range Research Aircraft (HALO) in November 2010. The data are used to quantify the influence of surface albedo variability on the retrieval of cirrus optical thickness and crystal effective radius. The applied retrieval of cirrus optical properties is based on a standard two-wavelength approach utilizing measured and simulated reflected radiance in the visible and near-infrared spectral region. Frequency distributions of the surface albedos from Moderate resolution Imaging Spectroradiometer (MODIS) satellite observations are used to compile surface-albedo-dependent lookup tables of reflected radiance. For each assumed surface albedo the cirrus optical thickness and effective crystal radius are retrieved as a function of the assumed surface albedo. The results for the cirrus optical thickness are compared to measurements from the High Spectral Resolution Lidar (HSRL). The uncertainty in cirrus optical thickness due to local variability of surface albedo in the specific case study investigated here is below 0.1 and thus less than that caused by the measurement uncertainty of both instruments. It is concluded that for the retrieval of cirrus optical thickness the surface albedo variability is negligible. However, for the retrieval of crystal effective radius, the surface albedo variability is of major importance, introducing uncertainties up to 50%. Furthermore, the influence of the bidirectional reflectance distribution function (BRDF) on the retrieval of crystal effective radius was investigated and quantified with uncertainties below 10%, which ranges below the uncertainty caused by the surface albedo variability. The comparison with the independent lidar data allowed for investigation of the role of the crystal shape in the retrieval. It is found that if assuming aggregate ice crystals, the HSRL observations fit best with the retrieved optical thickness from HALO-SR.


2008 ◽  
Vol 21 (19) ◽  
pp. 4955-4973 ◽  
Author(s):  
Michael P. Jensen ◽  
Andrew M. Vogelmann ◽  
William D. Collins ◽  
Guang J. Zhang ◽  
Edward P. Luke

Abstract To aid in understanding the role that marine boundary layer (MBL) clouds play in climate and assist in improving their representations in general circulation models (GCMs), their long-term microphysical and macroscale characteristics are quantified using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the National Aeronautics and Space Administration’s (NASA’s) Terra satellite. Six years of MODIS pixel-level cloud products are used from oceanic study regions off the west coasts of California, Peru, the Canary Islands, Angola, and Australia where these cloud types are common. Characterizations are given for their organization (macroscale structure), the associated microphysical properties, and the seasonal dependencies of their variations for scales consistent with the size of a GCM grid box (300 km × 300 km). MBL mesoscale structure is quantified using effective cloud diameter CD, which is introduced here as a simplified measure of bulk cloud organization; it is straightforward to compute and provides descriptive information beyond that offered by cloud fraction. The interrelationships of these characteristics are explored while considering the influences of the MBL state, such as the occurrence of drizzle. Several commonalities emerge for the five study regions. MBL clouds contain the best natural examples of plane-parallel clouds, but overcast clouds occur in only about 25% of the scenes, which emphasizes the importance of representing broken MBL cloud fields in climate models (that are subgrid scale). During the peak months of cloud occurrence, mesoscale organization (larger CD) increases such that the fractions of scenes characterized as “overcast” and “clumped” increase at the expense of the “scattered” scenes. Cloud liquid water path and visible optical depth usually trend strongly with CD, with the largest values occurring for scenes that are drizzling. However, considerable interregional differences exist in these trends, suggesting that different regression functionalities exist for each region. For peak versus off-peak months, the fraction of drizzling scenes (as a function of CD) are similar for California and Angola, which suggests that a single probability distribution function might be used for their drizzle occurrence in climate models. The patterns are strikingly opposite for Peru and Australia; thus, the contrasts among regions may offer a test bed for model simulations of MBL drizzle occurrence.


2005 ◽  
Vol 62 (6) ◽  
pp. 1678-1693 ◽  
Author(s):  
H. Morrison ◽  
J. A. Curry ◽  
M. D. Shupe ◽  
P. Zuidema

Abstract The new double-moment microphysics scheme described in Part I of this paper is implemented into a single-column model to simulate clouds and radiation observed during the period 1 April–15 May 1998 of the Surface Heat Budget of the Arctic (SHEBA) and First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment–Arctic Clouds Experiment (FIRE–ACE) field projects. Mean predicted cloud boundaries and total cloud fraction compare reasonably well with observations. Cloud phase partitioning, which is crucial in determining the surface radiative fluxes, is fairly similar to ground-based retrievals. However, the fraction of time that liquid is present in the column is somewhat underpredicted, leading to small biases in the downwelling shortwave and longwave radiative fluxes at the surface. Results using the new scheme are compared to parallel simulations using other microphysics parameterizations of varying complexity. The predicted liquid water path and cloud phase is significantly improved using the new scheme relative to a single-moment parameterization predicting only the mixing ratio of the water species. Results indicate that a realistic treatment of cloud ice number concentration (prognosing rather than diagnosing) is needed to simulate arctic clouds. Sensitivity tests are also performed by varying the aerosol size, solubility, and number concentration to explore potential cloud–aerosol–radiation interactions in arctic stratus.


2020 ◽  
Vol 4 (1) ◽  
pp. 5
Author(s):  
Elena Volpert ◽  
Natalia Chubarova

The temporal variability of solar shortwave radiation (SSR) has been assessed over northern Eurasia (40°–80° N; 10° W–180° E) by using an SSR reconstruction model since the middle of the 20th century. The reconstruction model estimates the year-to-year SSR variability as a sum of variations in SSR due to changes in aerosol, effective cloud amount and cloud optical thickness, which are the most effective factors affecting SSR. The retrievals of year-to-year SSR variations according to different factors were tested against long-term measurements in the Moscow State University Meteorological Observatory from 1968–2016. The reconstructed changes show a good agreement with measurements with determination factor R2 = 0.8. The analysis of SSR trends since 1979 has detected a significant growth of 2.5% per decade, which may be explained by its increase due to the change in cloud amount (+2.4% per decade) and aerosol optical thickness (+0.4% per decade). The trend due to cloud optical thickness was statistically insignificant. Using the SSR reconstruction model, we obtained the long-term SSR variability due to different factors for the territory of northern Eurasia. The increasing SSR trends have been detected on most sites since 1979. The long-term SSR variability over northern Eurasia is effectively explained by changes in cloud amount and, in addition, by changes in aerosol loading over the polluted regions. The retrievals of the SSR variations showed a good agreement with the changes in global radiance measurements from the World Radiation Data Center (WRDC) archive. The work was supported by RFBR grant number 18-05-00700.


Sign in / Sign up

Export Citation Format

Share Document