scholarly journals Refreeze experiments with water droplets containing different types of ice nuclei interpreted by classical nucleation theory

2017 ◽  
Vol 17 (5) ◽  
pp. 3525-3552 ◽  
Author(s):  
Lukas Kaufmann ◽  
Claudia Marcolli ◽  
Beiping Luo ◽  
Thomas Peter

Abstract. Homogeneous nucleation of ice in supercooled water droplets is a stochastic process. In its classical description, the growth of the ice phase requires the emergence of a critical embryo from random fluctuations of water molecules between the water bulk and ice-like clusters, which is associated with overcoming an energy barrier. For heterogeneous ice nucleation on ice-nucleating surfaces both stochastic and deterministic descriptions are in use. Deterministic (singular) descriptions are often favored because the temperature dependence of ice nucleation on a substrate usually dominates the stochastic time dependence, and the ease of representation facilitates the incorporation in climate models. Conversely, classical nucleation theory (CNT) describes heterogeneous ice nucleation as a stochastic process with a reduced energy barrier for the formation of a critical embryo in the presence of an ice-nucleating surface. The energy reduction is conveniently parameterized in terms of a contact angle α between the ice phase immersed in liquid water and the heterogeneous surface. This study investigates various ice-nucleating agents in immersion mode by subjecting them to repeated freezing cycles to elucidate and discriminate the time and temperature dependences of heterogeneous ice nucleation. Freezing rates determined from such refreeze experiments are presented for Hoggar Mountain dust, birch pollen washing water, Arizona test dust (ATD), and also nonadecanol coatings. For the analysis of the experimental data with CNT, we assumed the same active site to be always responsible for freezing. Three different CNT-based parameterizations were used to describe rate coefficients for heterogeneous ice nucleation as a function of temperature, all leading to very similar results: for Hoggar Mountain dust, ATD, and larger nonadecanol-coated water droplets, the experimentally determined increase in freezing rate with decreasing temperature is too shallow to be described properly by CNT using the contact angle α as the only fit parameter. Conversely, birch pollen washing water and small nonadecanol-coated water droplets show temperature dependencies of freezing rates steeper than predicted by all three CNT parameterizations. Good agreement of observations and calculations can be obtained when a pre-factor β is introduced to the rate coefficient as a second fit parameter. Thus, the following microphysical picture emerges: heterogeneous freezing occurs at ice-nucleating sites that need a minimum (critical) surface area to host embryos of critical size to grow into a crystal. Fits based on CNT suggest that the critical active site area is in the range of 10–50 nm2, with the exact value depending on sample, temperature, and CNT-based parameterization. Two fitting parameters are needed to characterize individual active sites. The contact angle α lowers the energy barrier that has to be overcome to form the critical embryo at the site compared to the homogeneous case where the critical embryo develops in the volume of water. The pre-factor β is needed to adjust the calculated slope of freezing rate increase with temperature decrease. When this slope is steep, this can be interpreted as a high frequency of nucleation attempts, so that nucleation occurs immediately when the temperature is low enough for the active site to accommodate a critical embryo. This is the case for active sites of birch pollen washing water and for small droplets coated with nonadecanol. If the pre-factor is low, the frequency of nucleation attempts is low and the increase in freezing rate with decreasing temperature is shallow. This is the case for Hoggar Mountain dust, the large droplets coated with nonadecanol, and ATD. Various hypotheses why the value of the pre-factor depends on the nature of the active sites are discussed.

2016 ◽  
Author(s):  
Lukas Kaufmann ◽  
Claudia Marcolli ◽  
Beiping Luo ◽  
Thomas Peter

Abstract. Homogeneous nucleation of ice in supercooled water droplets is a stochastic process. In its classical description, the growth of the ice phase requires the emergence of a critical embryo from random fluctuations of water molecules between the water bulk and ice-like clusters, which is associated with overcoming an energy barrier. For heterogeneous ice nucleation on ice-nucleating surfaces both, stochastic and deterministic descriptions are in use. Deterministic (singular) descriptions are often favored because the temperature dependence of ice nucleation on a substrate usually dominates the stochastic time dependence, and the ease of representation facilitates the incorporation in climate models. Conversely, classical nucleation theory (CNT) describes heterogeneous ice nucleation as a stochastic process with a reduced energy barrier for the formation of a critical embryo in the presence of an ice-nucleating surface. This reduction is conveniently parameterized in terms of a contact angle α between the ice phase immersed in liquid water and the heterogeneous surface area. This study investigates various ice-nucleating agents in immersion mode by subjecting them to repeated freezing cycles to elucidate and discriminate the time and temperature dependences of heterogeneous ice nucleation. Freezing rates determined from such refreeze experiments are presented for Hoggar Mountain dust, birch pollen washing water and Arizona Test Dust (ATD) and nonadecanol coatings. For the analysis of the experimental data with CNT we assumed the same active site to be always responsible for freezing. Three different CNT-based parame-terizations were used to describe rate coefficients for heterogeneous ice nucleation as a function of temperature, all leading to very similar results: for Hoggar Mountain dust, ATD and larger nonadecanol coated water droplets, the experimentally determined increase of freezing rate with decreasing temperature is too shallow to be described properly by CNT using the contact angle as the only fit parameter. Birch pollen washing water and small nonadecanol coated water droplets show the reverse behavior with temperature dependencies of freezing rates steeper than predicted by CNT formulations. Good agreement of observations and calculations can be obtained when a prefactor β is introduced to the rate coefficient as second fit parameter. Thus, the following microphysical picture emerges: Heterogeneous freezing occurs on ice-nucleating sites that need a minimum (critical) surface area to host embryos of critical size to grow into a crystal. Fits based on CNT suggest that the critical active site area is in the range of 10–50 nm2 depending on sample, temperature, and CNT-based parameterization. Two fitting parameters are needed to characterize individual active sites. The contact angle lowers the energy barrier that has to be overcome to form the critical embryo on the site compared to the homogeneous case where the critical embryo develops in the volume of water. The prefactor β is needed to adjust the calculated slope of freezing rate increase with decreasing temperature to the measured one. When it is large, there are many nucleation attempts and nucleation occurs immediately when the temperature is low enough so that the active site can accommodate a critical embryo. This is the case for active sites of birch pollen washing water and the small droplets coated with nonadecanol. If the prefactor is low, the number of nucleation attempts is low and the increase of freezing rate with decreasing temperature is shallow. This is the case for Hoggar Mountain dust, the large droplets coated with nonadecanol, and ATD. Different hypotheses why the value of the prefactor depends on the nature of the active sites are discussed.


2007 ◽  
Vol 7 (19) ◽  
pp. 5081-5091 ◽  
Author(s):  
C. Marcolli ◽  
S. Gedamke ◽  
T. Peter ◽  
B. Zobrist

Abstract. A differential scanning calorimeter (DSC) was used to explore heterogeneous ice nucleation of emulsified aqueous suspensions of two Arizona test dust (ATD) samples with particle diameters of nominally 0–3 and 0–7 μm, respectively. Aqueous suspensions with ATD concentrations of 0.01–20 wt% have been investigated. The DSC thermograms exhibit a homogeneous and a heterogeneous freezing peak whose intensity ratios vary with the ATD concentration in the aqueous suspensions. Homogeneous freezing temperatures are in good agreement with recent measurements by other techniques. Depending on ATD concentration, heterogeneous ice nucleation occurred at temperatures as high as 256 K or down to the onset of homogeneous ice nucleation (237 K). For ATD-induced ice formation Classical Nucleation Theory (CNT) offers a suitable framework to parameterize nucleation rates as a function of temperature, experimentally determined ATD size, and emulsion droplet volume distributions. The latter two quantities serve to estimate the total heterogeneous surface area present in a droplet, whereas the suitability of an individual heterogeneous site to trigger nucleation is described by the compatibility function (or contact angle) in CNT. The intensity ratio of homogeneous to heterogeneous freezing peaks is in good agreement with the assumption that the ATD particles are randomly distributed amongst the emulsion droplets. The observed dependence of the heterogeneous freezing temperatures on ATD concentrations cannot be described by assuming a constant contact angle for all ATD particles, but requires the ice nucleation efficiency of ATD particles to be (log)normally distributed amongst the particles. Best quantitative agreement is reached when explicitly assuming that high-compatibility sites are rare and that therefore larger particles have on average more and better active sites than smaller ones. This analysis suggests that a particle has to have a diameter of at least 0.1 μm to exhibit on average one active site.


2007 ◽  
Vol 7 (4) ◽  
pp. 9687-9716
Author(s):  
C. Marcolli ◽  
S. Gedamke ◽  
T. Peter ◽  
B. Zobrist

Abstract. A differential scanning calorimeter (DSC) was used to explore heterogeneous ice nucleation of emulsified aqueous suspensions of two Arizona test dust (ATD) samples with particle diameters of nominally 0–3 and 0–7 μm, respectively. Aqueous suspensions with ATD concentrations of 0.01–20 wt% have been investigated. The DSC thermograms exhibit a homogeneous and a heterogeneous freezing peak whose intensity ratios vary with the ATD concentration in the aqueous suspensions. Homogeneous freezing temperatures are in good agreement with recent measurements by other techniques. Depending on ATD concentration, heterogeneous ice nucleation occurred at temperatures as high as 256 K or down to the onset of homogeneous ice nucleation (237 K). For ATD-induced ice formation Classical Nucleation Theory (CNT) offers a suitable framework to parameterize nucleation rates as a function of temperature, experimentally determined ATD size, and emulsion droplet volume distributions. The latter two quantities serve to estimate the total heterogeneous surface area present in a droplet, whereas the suitability of an individual heterogeneous site to trigger nucleation is described by the compatibility function (or contact angle) in heterogeneous CNT. The intensity ratio of homogeneous to heterogeneous freezing peaks is in good agreement with the assumption that the ATD particles are randomly distributed amongst the emulsion droplets. The observed dependence of the heterogeneous freezing temperatures on ATD concentrations cannot be described by assuming a constant contact angle for all ATD particles, but requires the ice nucleation efficiency of ATD particles to be (log)normally distributed amongst the particles. Best quantitative agreement is reached when explicitly assuming that high-compatibility sites are rare and that therefore larger particles have on average more and better active sites than smaller ones. This analysis suggests that a particle has to have a diameter of at least 0.1 μm to exhibit on average one active site.


2010 ◽  
Vol 10 (16) ◽  
pp. 7617-7641 ◽  
Author(s):  
R. Wagner ◽  
O. Möhler ◽  
H. Saathoff ◽  
M. Schnaiter ◽  
T. Leisner

Abstract. The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario that coating layers of oxalic acid or its salts may be formed by physical and chemical processing on pre-existing particulates such as mineral dust and soot. Given the broad diversity of the observed heterogeneous ice nucleability of the oxalate species, it is not straightforward to predict whether an oxalate coating layer will improve or reduce the ice nucleation ability of the seed aerosol particles.


2019 ◽  
Author(s):  
Robert O. David ◽  
Jonas Fahrni ◽  
Claudia Marcolli ◽  
Fabian Mahrt ◽  
Dominik Brühwiler ◽  
...  

Abstract. It has recently been shown that pore condensation and freezing (PCF) is a mechanism responsible for ice formation under cirrus cloud conditions. PCF is defined as the condensation of liquid water in narrow capillaries below water saturation due to the Kelvin effect, followed by either heterogeneous or homogeneous nucleation depending on the temperature regime and presence of an ice nucleating active site. By using sol-gel synthesized silica with well-defined pore diameters, morphology and distinct chemical surface-functionalization, the role of the water-silica contact angle and pore width on PCF is investigated. We find that contact angle and pore width play an important role in determining the relative humidity required for capillary condensation as predicted by the Kelvin effect and subsequent ice nucleation at cirrus temperatures. For the pore diameters and contact angles covered in this study, 2.2–9.2 nm and 15–78°, respectively, our results reveal that the contact angle plays an important role in predicting the humidity required for pore filling while the pore diameter determines the ability of pore water to freeze. For T > 235 K and below water saturation, pore diameters and contact angles were not able to predict the freezing ability of the particles suggesting an absence of active sites, thus ice nucleation did not proceed via a PCF mechanism. Rather, the ice nucleating ability of the particles depended solely on chemical functionalization. Therefore, parameterizations for the ice nucleating abilities of particles at cirrus conditions should differ from parameterizations at mixed-phase clouds conditions. Our results support PCF as the atmospherically relevant ice nucleation mechanism below water saturation when porous surfaces are encountered in the troposphere.


2019 ◽  
Author(s):  
Alexander D. Harrison ◽  
Katherine Lever ◽  
Alberto Sanchez-Marroquin ◽  
Mark A. Holden ◽  
Thomas F. Whale ◽  
...  

Abstract. Mineral dust particles are thought to be an important type of ice-nucleating particle (INP) in the mixed-phase cloud regime around the globe. While K-feldspar has been identified as being a particularly important component of mineral dust for ice nucleation, it has been shown that quartz is also relatively ice nucleation active. Given quartz typically makes up a substantial proportion of atmospheric desert dust it could potentially be important for cloud glaciation. Here, we survey the ice-nucleating ability of 10 α-quartz samples (the most common quartz polymorph) when immersed in microlitre supercooled water droplets. Despite all samples being α-quartz, the temperature at which they induce freezing varies by around 12 °C for a constant active site density. We find that some quartz samples are very sensitive to ageing in both aqueous suspension and air, resulting in a loss of ice-nucleating activity, while other samples are insensitive to exposure to air and water over many months. The sensitivity to water and air is perhaps surprising as quartz is thought of as a chemically resistant material, but this observation suggests that the active sites responsible for nucleation are less stable than the bulk of the material. We find that the quartz group of minerals are generally less active than K-feldspars, although the most active quartz samples are of a similar activity to some K-feldspars. We also find that the quartz samples are generally more active than the plagioclase feldspar group of minerals and the albite end-member has an intermediate activity. Using both the new and literature data, active site density parameterisations have been proposed for quartz, K-feldspar, plagioclase and albite. Combining these parameterisations with the typical atmospheric abundance of each mineral and comparing the results with atmospheric ice-nucleating particle concentrations, supports previous work that suggests that K-feldspar dominates, rather than quartz (or other minerals), the ice nucleation particle population in desert dust aerosol.


2017 ◽  
Author(s):  
Thomas Häusler ◽  
Lorenz Witek ◽  
Laura Felgitsch ◽  
Regina Hitzenberger ◽  
Hinrich Grothe

Abstract. A new setup to analyse the freezing behaviour of ice nucleation particles (INPs) dispersed in aqueous droplets has been developed with the aim to analyse ensembles of droplets with sizes in the micrometre range, in which INPs are immersed. Major disadvantages of conventional drop-freezing experiments like varying drop sizes or interactions between the water-oil mixture and the INP, were solved by introducing a unique freezing-chip consisting of an etched and sputtered 15 × 15 × 1 mm gold-plated silicon or pure gold film. Using this chip, isolated micrometre-sized droplets can be generated with sizes similar to droplets in real world clouds. The experimental set-up for drop-freezing experiments was revised and improved by establishing automated process control and image evaluation. The new set-up is economical, quick in handling the sample, precise in measurement and the results are more next to real conditions than former approaches. We were able to show the efficiency and accuracy of our setup by comparing measured freezing temperatures of different INPs (Snomax®, K-feldspar, birch pollen (Betula pendula) washing water, juniper pollen suspension (Juniperus communis) and ultrapure water) with already published results. The T50 values of ultrapure water (T50 = −37.2 °C), birch pollen washing water (T50 = −18 °C) and juniper pollen (T50 = −22.7 °C) match the data given in literature. Microcline shows higher freezing temperatures (T50 = −16.4 °C) than literature values from us and others, which can be explained by different preparing/milling parameters. The slightly lower freezing temperature of Snomax® (T50 = −8.9 °C) received by using the freezing-chip, compared to measurements already published, can be explained by different concentrations and droplet sizes. Our measurements and comparisons with the literature data show the important impact of droplet size, INP concentration and number of active sites on the T50 values. Here, the new set-up exhibits its strength in reproducibility and accuracy which is due to the defined and isolated droplets. Finally, it opens a temperature window down to −37 °C for freezing experiments which was not accessible with many former approaches and allows determination of IN also with weak nucleation activity.


CrystEngComm ◽  
2019 ◽  
Vol 21 (25) ◽  
pp. 3810-3821 ◽  
Author(s):  
Noriaki Kubota

Analytical solutions and Monte Carlo simulation agree well with experimental ice nucleation temperature distributions for water droplets.


Sign in / Sign up

Export Citation Format

Share Document