scholarly journals Confinement of air in the Asian monsoon anticyclone and pathways of convective air to the stratosphere during the summer season

2020 ◽  
Vol 20 (18) ◽  
pp. 11045-11064 ◽  
Author(s):  
Bernard Legras ◽  
Silvia Bucci

Abstract. We study the transport pathways from the top of convective clouds to the lower tropical stratosphere during the Asian monsoon, using a dense cover of Lagrangian trajectories driven by observed clouds and the two reanalyses ERA-Interim and ERA5 with diabatic and kinematic vertical motions. We find that the upward propagation of convective impact is very similar for the kinematic and diabatic trajectories using ERA5, while the two cases strongly differ for ERA-Interim. The parcels that stay confined within the Asian monsoon anticyclone and reach 380 K are mostly of continental origin, while maritime sources dominate when the whole global 380 K surface is considered. Over the continent, the separation of descending and ascending motion occurs at a crossover level near 364 K, which is slightly above the clear-sky zero level of radiative heating rate, except over the Tibetan Plateau. The strong impact of the Tibetan Plateau with respect to its share of high clouds is entirely due to its elevated proportion of high clouds above the crossover. The vertical conduit found in previous studies actually ends where the convective clouds detrain. Subsequent parcel motion is characterized by an ascending spiral that spans the whole anticyclone. The mean age of parcels with respect to convection exhibits a minimum at the centre of the Asian monsoon anticyclone, due to the permanent renewal by fresh convective air, and largest values on the periphery as air spirals out. This contrast is reduced by dilution for increasing altitude. Above 360 K, the confinement can be represented by a simple 1-D process of diabatic advection with loss. The mean loss time is about 13 d and uniform over the range 360 to 420 K, which is compared with a total circulation time of 2 to 3 weeks around the anticyclone. The vertical dilution is consequently exponential with an e-folding potential temperature scale of 15 K (about 3 km). The mechanism is compatible with the appearance of a columnar tracer pattern within the anticyclone. It is noticeable that the tropopause does not exhibit any discontinuity in the transport properties when seen in terms of potential temperature.

2019 ◽  
Author(s):  
Bernard Legras ◽  
Silvia Bucci

Abstract. We study the transport pathways from the top of convective clouds to the lower tropical stratosphere during the Asian monsoon, using massive Lagrangian trajectories driven by observed clouds and the two reanalysis ERA-Interim and ERA5 with diabatic and kinematic vertical motions. We find that the upward propagation of convective impact is very similar for the kinematic and diabatic calculations using ERA5 while the two cases strongly differ for ERA-Interim. The separation of descending and ascending motion occurs at a crossover level which is slightly above the all sky zero level of radiative heating rate, except over the Tibetan plateau. The parcels that stay confined within the Asian monsoon anticyclone and reach 380 K are mostly of continental origin while maritime sources are dominating when the whole global 380 K surface is considered. We find that the strong impact of the Tibetan plateau with respect to its share of high clouds is entirely due to its elevated proportion of high clouds above the crossover. We find no trace of a vertical conduit above convection over the Tibetan plateau; parcels are rather entrained into an ascending spiral motion that spans the whole anticyclone. The mean age of parcels with respect to convection exhibits a minimum at the centre of the Asian monsoon anticyclone due to the permanent renewal by fresh convective air and largest values on the periphery as air spirals out. The contrast is reduced by dilution for increasing potential temperature. We find that the confinement above 360 K can be represented, on the average, by a simple 1D process of diabatic advection with loss. The mean loss time is about 13 days and uniform over the range 360 K to 420 K which is to be compared with a total circulation time of two to three weeks around the anticyclone. The vertical dilution is consequently exponential with an e-folding potential temperature scale of 15 K (about 3 km).


2020 ◽  
Author(s):  
Bernard Legras ◽  
Silvia Bucci ◽  
Sivan Chandra ◽  
Ajil Kottayil

<p>We study the confinement of the air inside the Asian monsoon anticyclone during summer using both kinematic and diabatic Lagrangian trajectories with ERA5 and ERA-Interim reanalysis, and observed clouds. The improved consistency of ERA5 is demonstrated. It is shown that the escape time from the anticyclone estimated to be 13 days is of the same order as the circulation time which implies weak confinement. Parcels found inside the anticyclone have been mostly detrained by convection above θ =364 K, by about 2.6%  of the high clouds over Asia, with a prevalence of continental sources which are located beneath. The Tibetan plateau is found to be the most efficient provider with 10% of its high clouds but this is entirely due to the higher level of cloud tops in this region, and not to any preferred path above.  Actually,  most parcels escape the plateau to rise. The mean trapping is shown to be described by a 1D model that combines a simple mean ascent and a constant erosion loss, without any need of a “chimney effect”. The vertical dilution is exponential with a e-folding scale of 15 K in potential temperature from 370 K onward. The mean age of parcels with respect to convection exhibits a minimum at the centre of the Asian monsoon anticyclone due to the permanent renewal by fresh convective air and largest values on the periphery as air spirals out.</p><p>The variability of the the confinement is strongly linked with the oscillations of the anticyclone between its Tibetan mode and its Iranian mode, and to break and active periods of monsoon rain. We show that this variability modulates also the moisture in the lower stratosphere with wet events following active convection and dry events following the breaks.</p>


2016 ◽  
Vol 56 ◽  
pp. 7.1-7.29 ◽  
Author(s):  
Guoxiong Wu ◽  
Yimin Liu

Abstract Professor Yanai is remembered in our hearts as an esteemed friend. Based on his accomplishments in tropical meteorology and with his flashes of insight he led his group at the University of California, Los Angeles, in the 1980s and 1990s to explore the thermal features of the Tibetan Plateau (TP) and its relation to the Asian monsoon, and he brought forward the TP meteorology established by Ye Duzheng et al. in 1957 to a new stage. In cherishing the memory of Professor Yanai and his great contribution to the TP meteorology, the authors review their recent study on the impacts of the TP and contribute this chapter as an extension of their chapter titled “Effects of the Tibetan Plateau” published by Yanai and Wu in 2006 in the book The Asian Monsoon. The influence of a large-scale orography on climate depends not only on the mechanical and thermal forcing it exerts on the atmosphere, but also on the background atmospheric circulation. In winter the TP possesses two leading heating modes resulting from the relevant dominant atmospheric circulations, in particular the North Atlantic Oscillation and the North Pacific Oscillation. The prevailing effect of the mechanical forcing of the TP in wintertime generates a dipole type of circulation, in which the anticyclonic gyre in the middle and high latitudes contributes to the warm inland area to the west, and the cold seashore area to the east, of northeast Asia, whereas the cyclonic gyre in low latitudes contributes to the formation of a prolonged dry season over central and southern Asia and moist climate over southeastern Asia. Such a dipole circulation also generates a unique persistent rainfall in early spring (PRES) over southern China. In 1980s, Yanai and his colleagues analyzed the in situ observation and found that the constant potential temperature boundary layer over the TP can reach about 300 hPa before the summer monsoon onset. This study supports these findings, and demonstrates that such a boundary layer structure is a consequence of the atmospheric thermal adaptation to the surface sensible heating, which vanishes quickly with increasing height. The overshooting of rising air, which is induced by surface sensible heating, then can form a layer of constant potential temperature with a thickness of several kilometers. The thermal forcing of the TP on the lower tropospheric circulation looks like a sensible heat–driven air pump (SHAP). It is the surface sensible heating on the sloping sides of the plateau that the SHAP can effectively influence the Asian monsoon circulation. In spring the SHAP contributes to the seasonal abrupt change of the Asian circulation and anchors the earliest Asian summer monsoon onset over the eastern Bay of Bengal. In summer, this pumping, together with the thermal forcing over the Iranian Plateau, produces bimodality in the South Asian high activity in the upper troposphere, which is closely related to the climate anomaly patterns over South and East Asia. Because the isentropic surfaces in the middle and lower troposphere intersect with the TP, in summertime the plateau becomes a strong negative vorticity source of the atmosphere and affects the surrounding climate and even the Northern Hemispheric circulation via Rossby wave energy dispersion. Future prospects in related TP studies are also addressed.


2017 ◽  
Vol 30 (9) ◽  
pp. 3117-3137 ◽  
Author(s):  
Jinghua Chen ◽  
Xiaoqing Wu ◽  
Yan Yin ◽  
Qian Huang ◽  
Hui Xiao

Constrained by ERA-Interim, a cloud-resolving model is employed to characterize cloud systems over the Tibetan Plateau (TP) and east China. The authors focus on analyzing the role of different physical processes on cloud macro- and microscale properties of the cloud systems, especially convective cloud systems between east China and the TP. It is found that convective clouds over the TP are thinner than over east China. This difference is also reflected in the albedo at the top of the atmosphere, where smaller albedos are found for the clouds over the TP. Furthermore, the lifetimes of the deep cloud systems over the TP are shorter than over east China. For the entire simulated period, the latent heat released by phase transitions contributes the most to the total heating and moisture budget, followed by eddy transport over all regions. In addition, radiative heating also plays a nonnegligible role in the total heating effects over the TP. These results also suggest that the influence of ice phase processes is more important over the TP than east China, especially during deep convective periods. Affected by strong surface heat flux, the cloud-top height of convective clouds over the TP exhibits a diurnal cycle, leading to a diurnal cycle of rainfall.


2019 ◽  
Vol 33 (3) ◽  
pp. 433-445
Author(s):  
Zhiguo Yue ◽  
Xing Yu ◽  
Guihua Liu ◽  
Jin Dai ◽  
Yannian Zhu ◽  
...  

2020 ◽  
Vol 20 (10) ◽  
pp. 5923-5943 ◽  
Author(s):  
Meixin Zhang ◽  
Chun Zhao ◽  
Zhiyuan Cong ◽  
Qiuyan Du ◽  
Mingyue Xu ◽  
...  

Abstract. Most previous modeling studies about black carbon (BC) transport and its impact over the Tibetan Plateau (TP) conducted simulations with horizontal resolutions coarser than 20 km that may not be able to resolve the complex topography of the Himalayas well. In this study, the two experiments covering all of the Himalayas with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) at the horizontal resolution of 4 km but with two different topography datasets (4 km complex topography and 20 km smooth topography) are conducted for pre-monsoon season (April 2016) to investigate the impacts of topography on modeling the transport and distribution of BC over the TP. Both experiments show the evident accumulation of aerosols near the southern Himalayas during the pre-monsoon season, consistent with the satellite retrievals. The observed episode of high surface BC concentration at the station near Mt. Everest due to heavy biomass burning near the southern Himalayas is well captured by the simulations. The simulations indicate that the prevailing upflow across the Himalayas driven by the large-scale westerly and small-scale southerly circulations during the daytime is the dominant transport mechanism of southern Asian BC into the TP, and it is much stronger than that during the nighttime. The simulation with the 4 km topography resolves more valleys and mountain ridges and shows that the BC transport across the Himalayas can overcome the majority of mountain ridges, but the valley transport is more efficient. The complex topography results in stronger overall cross-Himalayan transport during the simulation period primarily due to the strengthened efficiency of near-surface meridional transport towards the TP, enhanced wind speed at some valleys and deeper valley channels associated with larger transported BC mass volume. This results in 50 % higher transport flux of BC across the Himalayas and 30 %–50 % stronger BC radiative heating in the atmosphere up to 10 km over the TP from the simulation with the 4 km complex topography than that with the 20 km smoother topography. The different topography also leads to different distributions of snow cover and BC forcing in snow. This study implies that the relatively smooth topography used by the models with resolutions coarser than 20 km may introduce significant negative biases in estimating light-absorbing aerosol radiative forcing over the TP during the pre-monsoon season. Highlights. The black carbon (BC) transport across the Himalayas can overcome the majority of mountain ridges, but the valley transport is much more efficient during the pre-monsoon season. The complex topography results in stronger overall cross-Himalayan transport during the study period primarily due to the strengthened efficiency of near-surface meridional transport towards the TP, enhanced wind speed at some valleys and deeper valley channels associated with larger transported BC mass volume. The complex topography generates 50 % higher transport flux of BC across the Himalayas and 30 %–50 % stronger BC radiative heating in the atmosphere up to 10 km over the Tibetan Plateau (TP) than the smoother topography, which implies that the smooth topography used by the models with relatively coarse resolution may introduce significant negative biases in estimating BC radiative forcing over the TP during the pre-monsoon season. The different topography also leads to different distributions of snow cover and BC forcing in snow over the TP.


2016 ◽  
Author(s):  
Xiaoping Wang ◽  
Jiao Ren ◽  
Ping Gong ◽  
Chuanfei Wang ◽  
Yonggang Xue ◽  
...  

Abstract. The Tibetan Plateau (TP) has been contaminated by persistent organic pollutants (POPs), including legacy organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) through atmospheric transport. The exact source regions, transport pathways and time trends of POPs to the TP are not well understood. Here XAD-based passive air samplers (PAS) were deployed at 16 Tibetan background sites from 2007 to 2012 to gain further insight into spatial patterns and temporal trends of OCPs and PCBs. The southeastern TP was characterized by dichlorodiphenyltrichloroethane (DDT) -related chemicals delivered by Indian Monsoon air masses. The northern and northwestern TP displayed the greatest absolute concentration and relative abundance of hexachlorobenzene (HCB) in the atmosphere, caused by the westerly-driven European air masses. The interactions between the DDT polluted Indian monsoon air and the clean westerly winds formed a transition zone in central Tibet where both DDT and HCB were the dominant chemicals. Based on 5-year of continuous sampling, our data indicated declining concentrations of HCB and hexachlorocyclohexanes (HCHs) across the Tibetan region. Inter-annual trends of DDT class chemicals, however, showed less variation during this 5-year sampling period, which may be due to the on-going usage of DDT in India. This paper demonstrates the possibility of using POPs fingerprints to investigate the climate interactions and the validity of using PAS to derive inter-annual atmospheric POPs time trends.


2020 ◽  
Author(s):  
Yingying Sha ◽  
Zhengguo Shi

<p>The Tibetan Plateau (TP) has undoubtedly played an essential role in the evolution and strengthening of the coupled climate system of the Asian monsoon and inland arid climate since the Cenozoic. However, a growing number of studies have found that regional and relatively smaller scale topography also has significant impact on Asian climate.<br>By using high resolution atmospheric circulation model, we analyzed the effect of the main body of the TP and its surrounding topography on the evolution of Asian climate. The surrounding topography includes the Yunnan-Guizhou Plateau (YG) at the southeastern margin of the Tibetan Plateau, the Pamir Plateau (Pr) and Tian Shan mountains (TS) at the northern margin and the Mongolian Plateau (MP) further north. The results show that different from the strengthening effect of the main TP, the YG significantly weakens the Indian monsoon. With the uplift of the YG, an anomalous anticyclonic circulation appeared in the lower troposphere over the southwest, resulting in the weakening of monsoon circulation from the Bay of Bengal to the Indian subcontinent and the Arabian sea. The decline in Indian monsoon precipitation caused by the YG accounts for one-third of the total increase in precipitation caused by the entire TP.<br>For the arid interior Asia, the main TP, YG, Pr and TS, as well as the MP all have reduced the annual precipitation in some extent. However, different from the consistent inhibiting effect of the main TP on the precipitation over the arid interior Asia throughout the year, the decreasing effect of the YG and the MP is mainly effective in boreal winter, which is closely related to the mechanical blocking effect. In addition, the Pr and TS play a key role in the temporal and spatial differentiation of precipitation in the arid interior Asia. Before the appearance of the Pr and TS, the precipitation seasonality over the eastern sub-region was characterized with maximum rainfall in spring and winter and minimum rainfall in summer. With the uplift of Pr and TS, the precipitation over the eastern part decreases in winter and significantly increases in summer, which leads to the change of precipitation seasonality to summer dominated.<br>The above results indicate that different part of the extensive-third pole have different influences on the Asian monsoon and inland aridity. It suggests that the Asian monsoon-inland arid climate may have undergone complex evolutionary processes on tectonic scale.</p>


Sign in / Sign up

Export Citation Format

Share Document