scholarly journals New insights into Rossby wave packet properties in the extratropical UTLS using GNSS radio occultations

2020 ◽  
Vol 20 (19) ◽  
pp. 11569-11592 ◽  
Author(s):  
Robin Pilch Kedzierski ◽  
Katja Matthes ◽  
Karl Bumke

Abstract. The present study describes Rossby wave packet (RWP) properties in the upper troposphere and lower stratosphere (UTLS) with the use of Global Navigation Satellite System radio occultation (GNSS-RO) measurements. This global study covering both hemispheres' extratropics is the first to tackle medium- and synoptic-scale waves with GNSS-RO. We use 1 decade of GNSS-RO temperature and pressure data from the CHAMP, COSMIC, GRACE, Metop-A, Metop-B, SAC-C and TerraSAR-X missions, combining them into one gridded dataset for the years 2007–2016. Our approach to extract RWP anomalies and their envelope uses Fourier and Hilbert transforms over longitude without pre- or post-processing the data. Our study is purely based on observations, only using ERA-Interim winds to provide information about the background wind regimes. The RWP structures that we obtain in the UTLS agree well with theory and earlier studies, in terms of coherent phase or group propagation, zonal scale and distribution over latitudes. Furthermore, we show that RWP pressure anomalies maximize around the tropopause, while RWP temperature anomalies maximize right above the tropopause height with a contrasting minimum right below. RWP activity follows the zonal-mean tropopause during all seasons. RWP anomalies in the lower stratosphere are dynamically coupled to the upper troposphere. They are part of the same system with a quasi-barotropic structure across the UTLS. RWP activity often reaches up to 20 km height and occasionally higher, defying the Charney–Drazin criterion. We note enhanced amplitude and upward propagation of RWP activity during sudden stratospheric warmings. We provide observational support for improvements in RWP diagnostics and wave trend analysis in models and reanalyses. Wave quantities follow the tropopause, and diagnosing them on fixed pressure levels (which the tropopause does not follow) can lead to aliasing. Our novel approach analyzing GNSS-RO pressure anomalies provides wave signals with better continuity and coherence across the UTLS and the stratosphere, compared to temperature anomalies. Thus, RWP vertical propagation is much easier to analyze with pressure data.

2020 ◽  
Author(s):  
Robin Pilch Kedzierski ◽  
Katja Matthes ◽  
Karl Bumke

Abstract. The present study describes Rossby wave packet (RWP) properties in the upper-troposphere and lower-stratosphere (UTLS) with the use of Global Navigation Satellite System radio occultation (GNSS-RO) measurements. This global study covering both hemisphere's extratropics is the first to tackle medium and synoptic-scale waves with GNSS-RO. We use one decade of GNSS-RO temperature and pressure data from the CHAMP, COSMIC, GRACE, Metop-A, Metop-B, SAC-C and TerraSAR-X missions; combining them into one gridded dataset for the years 2007–2016. Our approach to extract RWP anomalies and their envelope uses Fourier and Hilbert transforms over longitude without pre- or post-processing the data. Our study is purely based on observations, only using ERA-Interim winds to provide information about the background wind regimes. The RWP structures that we obtain in the UTLS agree well with theory and earlier studies, in terms of coherent phase/group propagation, zonal scale and distribution over latitudes. Furthermore, we show that RWP pressure anomalies maximize around the tropopause, while RWP temperature anomalies maximize right above tropopause height with a contrasting minimum right below. RWP activity follows the zonal-mean tropopause during all seasons. RWP anomalies in the lower stratosphere are dynamically coupled to the upper troposphere. They are part of the same system with a quasi-barotropic structure across the UTLS. RWP activity often reaches up to 20 km height and occasionally higher, defying the Charney–Drazin criterion. We note enhanced amplitude and upward propagation of RWP activity during sudden stratospheric warmings. We provide observational support for improvements in RWP diagnostics and wave trend analysis in models and reanalyses. Wave quantities follow the tropopause, and diagnosing them on fixed pressure levels (which the tropopause does not follow) can lead to aliasing. Our novel approach analysing GNSS-RO pressure anomalies provides wave signals with better continuity and coherence across the UTLS and the stratosphere, compared to temperature anomalies. Thus, RWP vertical propagation is much easier to analyse with pressure data.


2019 ◽  
Vol 19 (10) ◽  
pp. 6659-6679 ◽  
Author(s):  
Ming Shangguan ◽  
Wuke Wang ◽  
Shuanggen Jin

Abstract. Temperature and ozone changes in the upper troposphere and lower stratosphere (UTLS) are important components of climate change. In this paper, variability and trends of temperature and ozone in the UTLS are investigated for the period 2002–2017 using high-quality, high vertical resolution Global Navigation Satellite System radio occultation (GNSS RO) data and improved merged satellite data sets. As part of the Stratosphere-troposphere Processes And their Role in Climate (SPARC) Reanalysis Intercomparison Project (S-RIP), three reanalysis data sets, including the ERA-I, MERRA2 and the recently released ERA5, are evaluated for their representation of temperature and ozone in the UTLS. The recent temperature and ozone trends are updated with a multiple linear regression (MLR) method and related to sea surface temperature (SST) changes based on model simulations made with NCAR's Whole Atmosphere Community Climate Model (WACCM). All reanalysis temperatures show good agreement with the GNSS RO measurements in both absolute value and annual cycle. Interannual variations in temperature related to Quasi-Biennial Oscillation (QBO) and the El Niño–Southern Oscillation (ENSO) processes are well represented by all reanalyses. However, evident biases can be seen in reanalyses for the linear trends of temperature since they are affected by discontinuities in assimilated observations and methods. Such biases can be corrected and the estimated trends can be significantly improved. ERA5 is significantly improved compared to ERA-I and shows the best agreement with the GNSS RO temperature. The MLR results indicate a significant warming of 0.2–0.3 K per decade in most areas of the troposphere, with a stronger increase of 0.4–0.5 K per decade at midlatitudes of both hemispheres. In contrast, the stratospheric temperature decreases at a rate of 0.1–0.3 K per decade, which is most significant in the Southern Hemisphere (SH). Positive temperature trends of 0.1–0.3 K per decade are seen in the tropical lower stratosphere (100–50 hPa). Negative trends of ozone are found in the Northern Hemisphere (NH) at 150–50 hPa, while positive trends are evident in the tropical lower stratosphere. Asymmetric trends of ozone can be found in the midlatitudes of two hemispheres in the middle stratosphere, with significant ozone decrease in the NH and increase in ozone in the SH. Large biases exist in reanalyses, and it is still challenging to do trend analysis based on reanalysis ozone data. According to single-factor-controlled model simulations with WACCM, the temperature increase in the troposphere and the ozone decrease in the NH stratosphere are mainly connected to the increase in SST and subsequent changes of atmospheric circulations. Both the increase in SSTs and the decrease in ozone in the NH contribute to the temperature decrease in the NH stratosphere. The increase in temperature in the lower stratospheric tropics may be related to an increase in ozone in that region, while warming SSTs contribute to a cooling in that area.


2021 ◽  
Vol 893 (1) ◽  
pp. 012007
Author(s):  
Firas Rasyad ◽  
Tri Wahyu Hadi ◽  
Noersomadi

Abstract Gravity Waves (GWs) are believed to play important role in the generation of the driving force of the stratospheric Quasi-Biennial Oscillation (QBO). Deep convection in the equatorial region can generate large amount of GW with short vertical wavelength (λz <1 km) but studies of these wave activities in the upper troposphere lower stratosphere (UTLS) region are still limited. Recent advances in Global Navigation Satellite System (GNSS) Radio Occultation (RO) retrieval techniques have made it possible to derive global temperature profile with vertical resolution of less than 1 km. In this research, activities of GW with λz from 0.5 to 3.5 km in the UTLS region of 20-27 km heights are identified by calculating the GW potential energy (E p). Correlation between GW activities and QBO phases is examined using 50 hPa zonal wind as the QBO index. The results show that during both easterly and westerly QBO phases, the GW E p value increases gradually with time and reaches its peak in the transition periods. This pattern is seen in E p with all vertical wavelengths between 0.5-3.5 km but the percentage value of E p for λz<1 km is higher during the transition from westerly to easterly QBO. The GW E p values exhibit downward propagation with the QBO phase but there are also discernible upward propagations of GW activities below 24 km height and intersect those two bring large changes in QBO phases. Additionally, higher percentage of E p with λz<1 km is also found to be associated with El Niño events.


2014 ◽  
Vol 142 (2) ◽  
pp. 555-572 ◽  
Author(s):  
Peter Bauer ◽  
Gábor Radnóti ◽  
Sean Healy ◽  
Carla Cardinali

Abstract Observing system experiments within the operational ECMWF data assimilation framework have been performed for summer 2008 when the largest recorded number of Global Navigation Satellite System (GNSS) radio occultation observations from both operational and experimental satellites were available. Constellations with 0%, 5%, 33%, 67%, and 100% data volume were assimilated to quantify the sensitivity of analysis and forecast quality to radio occultation data volume. These observations mostly constrain upper-tropospheric and stratospheric temperatures and correct an apparent model bias that changes sign across the upper-troposphere–lower-stratosphere boundary. This correction effect does not saturate with increasing data volume, even if more data are assimilated than available in today’s analyses. Another important function of radio occultation data, namely, the anchoring of variational radiance bias corrections, is demonstrated in this study. This effect also does not saturate with increasing data volume. In the stratosphere, the anchoring by radio occultation data is stronger than provided by radiosonde and aircraft observations.


2021 ◽  
Vol 10 (8) ◽  
pp. 500
Author(s):  
Lianwei Li ◽  
Yangfeng Xu ◽  
Cunjin Xue ◽  
Yuxuan Fu ◽  
Yuanyu Zhang

It is important to consider where, when, and how the evolution of sea surface temperature anomalies (SSTA) plays significant roles in regional or global climate changes. In the comparison of where and when, there is a great challenge in clearly describing how SSTA evolves in space and time. In light of the evolution from generation, through development, and to the dissipation of SSTA, this paper proposes a novel approach to identifying an evolution of SSTA in space and time from a time-series of a raster dataset. This method, called PoAIES, includes three key steps. Firstly, a cluster-based method is enhanced to explore spatiotemporal clusters of SSTA, and each cluster of SSTA at a time snapshot is taken as a snapshot object of SSTA. Secondly, the spatiotemporal topologies of snapshot objects of SSTA at successive time snapshots are used to link snapshot objects of SSTA into an evolution object of SSTA, which is called a process object. Here, a linking threshold is automatically determined according to the overlapped areas of the snapshot objects, and only those snapshot objects that meet the specified linking threshold are linked together into a process object. Thirdly, we use a graph-based model to represent a process object of SSTA. A node represents a snapshot object of SSTA, and an edge represents an evolution between two snapshot objects. Using a number of child nodes from an edge’s parent node and a number of parent nodes from the edge’s child node, a type of edge (an evolution relationship) is identified, which shows its development, splitting, merging, or splitting/merging. Finally, an experiment on a simulated dataset is used to demonstrate the effectiveness and the advantages of PoAIES, and a real dataset of satellite-SSTA is used to verify the rationality of PoAIES with the help of ENSO’s relevant knowledge, which may provide new references for global change research.


2011 ◽  
Vol 47 (2) ◽  
pp. 348-355 ◽  
Author(s):  
Riccardo Biondi ◽  
Torsten Neubert ◽  
Stig Syndergaard ◽  
Johannes Nielsen

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Jiali Luo ◽  
Jiayao Song ◽  
Hongying Tian ◽  
Lei Liu ◽  
Xinlei Liang

We use ERA-Interim reanalysis, MLS observations, and a trajectory model to examine the chemical transport and tracers distribution in the Upper Troposphere and Lower Stratosphere (UTLS) associated with an east-west oscillation case of the anticyclone in 2016. The results show that the spatial distribution of water vapor (H2O) was more consistent with the location of the anticyclone than carbon monoxide (CO) at 100 hPa, and an independent relative high concentration center was only found in H2O field. At 215 hPa, although the anticyclone center also migrated from the Tibetan Mode (TM) to the Iranian Mode (IM), the relative high concentration centers of both tracers were always colocated with regions where upward motion was strong in the UTLS. When the anticyclone migrated from the TM, air within the anticyclone over Tibetan Plateau may transport both westward and eastward but was always within the UTLS. The relative high concentration of tropospheric tracers within the anticyclone in the IM was from the east and transported by the westward propagation of the anticyclone rather than being lifted from surface directly. Air within the relative high geopotential height centers over Western Pacific was partly from the main anticyclone and partly from lower levels.


1997 ◽  
Vol 28 ◽  
pp. S65-S66 ◽  
Author(s):  
F. Arnold ◽  
K.H. Wohlfrom ◽  
J. Schneider ◽  
M. Klemm ◽  
T. Stilp ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document