scholarly journals Aircraft observations of water-soluble dicarboxylic acids in the aerosols over China

2016 ◽  
Author(s):  
Yan-Lin Zhang ◽  
Kimitaka Kawamura ◽  
Ping Qing Fu ◽  
Suresh K. R. Boreddy ◽  
Tomomi Watanabe ◽  
...  

Abstract. Vertical profiles of low molecular weight dicarboxylic acids, related organic compounds and SOA tracer compounds in particle phase have not yet been simultaneously explored in East Asia, although there is growing evidence that aqueous phase oxidation of volatile organic compounds may be responsible for the elevated organic aerosols (OA) in the free troposphere. Here, we found consistently good correlation of oxalic acid, the most abundant organics globally, with its precursors as well as biogenic-derived secondary OA (SOA) compounds in Chinese tropospheric aerosols by aircraft measurements. Anthropogenically derived dicarboxylic acids (i.e., C5 and C6 diacids) at high altitudes were 4–20 times higher than those from surface measurements and even occasionally dominant over oxalic acid at altitude higher than 2 km, which is in contrast to the predominance of oxalic acid previously reported globally including the tropospheric and surface aerosols. This indicates an enhancement of tropospheric SOA formation from anthropogenic precursors. Furthermore, oxalic acid-tosulfate ratio maximized at altitude of ~2 km, explaining aqueous-phase SOA production that was supported by good correlations with predicted liquid water content, organic carbon and biogenic SOA tracers. These results demonstrate that elevated oxalic acid and related SOA compounds from both the anthropogenic and biogenic sources may substantially contribute to tropospheric OA burden over polluted regions of China, implying aerosol-associated climate effects and intercontinental transport.

2016 ◽  
Vol 16 (10) ◽  
pp. 6407-6419 ◽  
Author(s):  
Yan-Lin Zhang ◽  
Kimitaka Kawamura ◽  
Ping Qing Fu ◽  
Suresh K. R. Boreddy ◽  
Tomomi Watanabe ◽  
...  

Abstract. Vertical profiles of dicarboxylic acids, related organic compounds and secondary organic aerosol (SOA) tracer compounds in particle phase have not yet been simultaneously explored in East Asia, although there is growing evidence that aqueous-phase oxidation of volatile organic compounds may be responsible for the elevated organic aerosols (OA) in the troposphere. Here, we found consistently good correlation of oxalic acid, the most abundant individual organic compounds in aerosols globally, with its precursors as well as biogenic-derived SOA compounds in Chinese tropospheric aerosols by aircraft measurements. Anthropogenically derived dicarboxylic acids (i.e., C5 and C6 diacids) at high altitudes were 4–20 times higher than those from surface measurements and even occasionally dominant over oxalic acid at altitudes higher than 2 km, which is in contrast to the predominance of oxalic acid previously reported globally including the tropospheric and surface aerosols. This indicates an enhancement of tropospheric SOA formation from anthropogenic precursors. Furthermore, oxalic acid-to-sulfate ratio maximized at altitudes of  ∼  2 km, explaining aqueous-phase SOA production that was supported by good correlations with predicted liquid water content, organic carbon and biogenic SOA tracers. These results demonstrate that elevated oxalic acid and related SOA compounds from both the anthropogenic and biogenic sources may substantially contribute to tropospheric OA burden over polluted regions of China, implying aerosol-associated climate effects and intercontinental transport.


2020 ◽  
Author(s):  
Amina Khaled ◽  
Minghui Zhang ◽  
Pierre Amato ◽  
Anne-Marie Delort ◽  
Barbara Ervens

Abstract. Water-soluble organic compounds represent a significant fraction of total atmospheric carbon. The main oxidants towards them in the gas and aqueous phases are OH and NO3 radicals. In addition to chemical solutes, a great variety of microorganisms (e.g. bacteria, viruses, fungi) has been identified in cloud water. Previous lab studies suggested that for some organics, biodegradation by bacteria in water is comparable to their loss by chemical processes. We perform model sensitivity studies over large ranges of biological and chemical process parameters using a box model with a detailed atmospheric multiphase chemical mechanism and biodegradation processes to explore the importance of biodegradation of organics in the aqueous phase. Accounting for the fact that only a small number fraction of cloud droplets (~ 0.0001–0.001) contains active bacteria cells, we consider only a few bacteria-containing droplets in the model cloud. We demonstrate that biodegradation might be most efficient for volatile organic compounds (VOC) with intermediate solubility (~ 104 ≤ KH(eff) [M atm−1] ≤ 106, e.g., formic and acetic acids). This can be explained by the transport limitation due evaporation of organics from bacteria-free droplets to the gas phase, followed by the dissolution into bacteria-containing droplets. For non-volatile organics (NVOC), such as dicarboxylic acids, the upper limit of organic loss by biodegradation can be approximated by the amount of organics dissolved in the bacteria-containing droplets (


2011 ◽  
Vol 11 (3) ◽  
pp. 8515-8551
Author(s):  
D. Huang ◽  
X. Zhang ◽  
Z. M. Chen ◽  
Y. Zhao ◽  
X. L. Shen

Abstract. Aqueous phase chemical processes of organic compounds in the atmosphere have received increasing attention, partly due to their potential contribution to the formation of secondary organic aerosol (SOA). Here, we analyzed the aqueous oxidation of isoprene in clouds and its reaction products, including carbonyl compounds and organic acids. We also performed a laboratory simulation to improve our understanding of the kinetics and mechanisms for the products of aqueous isoprene oxidation that are significant precursors of SOA; these included methacrolein (MACR), methyl vinyl ketone (MVK), methyl glyoxal (MG), and glyoxal (GL). We used a novel chemical titration method to monitor the concentration of isoprene in the aqueous phase. We used a box model to interpret the mechanistic differences between aqueous- and gas-phase OH radical-initiated isoprene oxidations. Our results were the first demonstration of the rate constant for the reaction between isoprene and OH radical in water, 3.50 (± 0.98) × 109 M−1 s−1 at 283 K. Molar yields were determined based on consumed isoprene. Of note, the ratio of the yields of MVK (18.9 ± 0.8%) to MACR (9.0 ± 1.1%) in the aqueous phase isoprene oxidation was approximately double that observed for the corresponding gas phase reaction. We hypothesized that this might be explained by a water-induced enhancement in the self-reaction of a hydroxy isoprene peroxyl radical (HOCH2C(CH3)(O2)CH = CH2) produced in the aqueous reaction. The observed yields for MG and GL were 11.4 ± 0.3% and 3.8 ± 0.1%, respectively. Model simulations indicated that several potential pathways may contribute to the formation of MG and GL. Finally, oxalic acid increased steadily throughout the course of the study, even after isoprene was consumed completely. The observed yield of oxalic acid was 26.2 ± 0.8% at 6 h. The observed carbon balance accounted for ~50% of the consumed isoprene. The presence of high-molecular-weight compounds may have accounted for a large portion of the missing carbons, but they were not quantified in this study. In summary, our work has provided experimental evidence that condensed water could affect the distribution of oxygenated organic compounds produced in the oxidation of volatile organic compounds. If volatile organic compounds like isoprene and terpenes undergo aqueous oxidation to a larger extent than considered previously, the contribution of their atmospheric aqueous oxidation should be considered when constructing future models of the global SOA budget.


2020 ◽  
Author(s):  
Wanyu Zhao ◽  
Hong Ren ◽  
Kimitaka Kawamura ◽  
Huiyun Du ◽  
Xueshun Chen ◽  
...  

Abstract. Vertical distribution of dicarboxylic acids, oxoacids, α-dicarbonyls, and other organic tracer compounds in fine aerosols (PM2.5) was investigated from the ground surface (8 m) to 260 m at a 325-meter meteorological tower in Beijing in the summer of 2015. Results showed that the concentrations of oxalic acid (C2), the predominant diacid, were more abundant at 120 m (210 ± 154 ng m−3) and 260 m (220 ± 140 ng m−3) than those at the ground level (160 ± 90 ng m−3). Concentrations of phthalic acid (Ph) decreased with the increase of heights, demonstrating that the vehicular exhausts at the ground surface was the main contributor. Positive correlations were noteworthy for C2/total diacids with mass ratios of C2 to main oxoacids (Pyr, ωC2) and α-dicarbonyls (Gly, MeGly) in polluted days (0.42 ≤ r2 ≤ 0.65), especially at the ground level. In clean days, the ratios of carbon content in oxalic acid to water soluble organic carbon (C2-C/WSOC) showed larger values at 120 m and 260 m than those at the ground surface. However, in polluted days, the C2-C/WSOC ratio mainly reached its maximum at the ground level. These phenomena may indicate the enhanced contribution of aqueous-phase oxidation to oxalic acid in polluted days. Combined with the influence of wind field, total diacids, oxoacids and α-dicarbonyls decreased by 22 %–58 % under the control on anthropogenic activities during the 2015 Victory Parade period. Furthermore, the PMF results showed that the secondary formation routes (secondary sulfate formation and secondary nitrate formation) were the dominant contributors (37–44 %) to organic acids, followed by biomass burning (25–30 %) and motor vehicles (18–24 %). In this study, the organic acids at the ground level were largely associated with local traffic emissions, while the long-range atmospheric transport followed by photochemical aging contributed more to diacids and related compounds in the boundary layer over Beijing than the ground surface.


2005 ◽  
Vol 5 (3) ◽  
pp. 2599-2642 ◽  
Author(s):  
A. Petzold ◽  
M. Gysel ◽  
X. Vancassel ◽  
R. Hitzenberger ◽  
H. Puxbaum ◽  
...  

Abstract. The European PartEmis project (''Measurement and prediction of emissions of aerosols and gaseous precursors from gas turbine engines'') was focussed on the characterisation and quantification of exhaust emissions from a gas turbine engine. A comprehensive suite of aerosol, gas and chemi-ion measurements were conducted under different combustor operating conditions and fuel sulphur concentrations. Combustion aerosol characterisation included on-line measurements of mass and number concentration, size distribution, mixing state, thermal stability of internally mixed particles, hygroscopicity, cloud condensation nuclei (CCN) activation potential, and off-line analysis of chemical composition. Modelling of CCN activation of combustion particles was conducted using microphysical and chemical properties obtained from the measurements as input data. Based on this unique data set, the role of sulphuric acid coatings on the combustion particles, formed in the cooling exhaust plume through either direct condensation of gaseous sulphuric acid or coagulation with volatile condensation particles nucleating from gaseous sulphuric acid, and the role of the organic fraction for the CCN activation of combustion particles was investigated. It was found that particles containing a large fraction of non-volatile organic compounds grow significantly less at high relative humidity than particles with a lower content of non-volatile OC. Also the effect of the non-volatile OC fraction on the potential CCN activation is significant. While a coating of water-soluble sulphuric acid increases the potential CCN activation, or lowers the activation diameter, respectively, the non-volatile organic compounds, mainly found at lower combustion temperatures, can partially compensate this sulphuric acid-related enhancement of CCN activation of carbonaceous combustion aerosol particles.


2019 ◽  
Author(s):  
Ahmad J. Rusumdar ◽  
Andreas Tilgner ◽  
Ralf Wolke ◽  
Hartmut Herrmann

Abstract. Tropospheric deliquesced particles are characterised by concentrated non-ideal solutions (aerosol liquid water or ALW) that can affect the occurring multiphase chemistry. However, such non-ideal solution effects have generally not yet been considered in and investigated by current complex multiphase chemistry models in an adequate way. Therefore, the present study aims at accessing the impact of non-ideality on multiphase chemical processing in concentrated aqueous aerosols. Simulations with the multiphase chemistry model (SPACCIM-SpactMod) are performed in different environmental and microphysical conditions with and without a treatment of non-ideal solutions in order to assess its impact on aqueous-phase chemical processing. The present study shows that activity coefficients of inorganic ions are often below unity under 90 % RH-deliquesced aerosol conditions, and that most uncharged organic compounds exhibit activity coefficient values of around or even above unity. Due to this behaviour, model studies have revealed that the inclusion of non-ideality considerably affects the multiphase chemical processing of transition metal ions (TMIs), oxidants, and related chemical subsystems such as organic chemistry. In detail, both the chemical formation and oxidation fluxes of Fe(II) are substantially lowered by a factor of 2.8 in the non-ideal base case compared to the ideal case. The reduced Fe(II) processing in the non-ideal base case, including lowered chemical fluxes of the Fenton reaction (−70 %), leads to a reduced processing of HOx/HOy. under deliquesced aerosol conditions. Consequently, higher multiphase H2O2 concentrations (larger by a factor of 3.1) and lower aqueous-phase OH concentrations (lower by a factor of ≈ 4) are modelled during non-cloud periods. For H2O2, a comparison of the chemical reaction fluxes reveals that the most important sink, the reaction with HSO3−, contributes with a 40 % higher flux in the non-ideal base case than in the ideal case, leading to more efficient sulfate formation. On the other hand, the chemical fluxes of the OH radical are about 50 % lower in the non-ideal base case than in the ideal case, including lower degradation fluxes of organic aerosol components. Thus, considering non-ideality influences the chemical processing and the concentrations of organic compounds under deliquesced particle conditions in a compound-specific manner. For example, the reduced oxidation budget under deliquesced particle conditions leads to both increased and decreased concentration levels, e.g. of important C2/C3 carboxylic acids. For oxalic acid, the present study demonstrates that the non-ideality treatment enables more realistic predictions of high oxalate concentrations than observed under ambient highly polluted conditions. Furthermore, the simulations implicate that lower humidity conditions, i.e. more concentrated solutions, might promote higher oxalic acid concentration levels in aqueous aerosols due to differently affected formation and degradation processes.


2012 ◽  
Vol 12 (3) ◽  
pp. 6909-6955
Author(s):  
A. Fortems-Cheiney ◽  
F. Chevallier ◽  
I. Pison ◽  
P. Bousquet ◽  
M. Saunois ◽  
...  

Abstract. For the first time, carbon monoxide (CO) and formaldehyde (HCHO) satellite retrievals have been used together with methane (CH4) and methyl choloroform (CH3CCl3 or MCF) surface measurements in a complex inversion system. The CO and HCHO are, respectively from MOPITT and OMI instruments. The multi-species and multi-satellite dataset inversion is done for the 2005–2008 period. The robustness of our results is evaluated by comparing our posterior-modeled concentrations with several sets of independent measurements of atmospheric mixing ratios. The inversion results lead to significant changes from the prior to the posterior, in terms of magnitude and seasonality of the CO and CH4 surface fluxes and of the 3-D HCHO production by non-methane volatile organic compounds (NMVOCs). The latter is significantly decreased, indicating an overestimation of the biogenic NMVOCs emissions, such as isoprene, in the GEIA inventory. CO and CH4 surface emissions are increased by the inversion, from 1037 to 1409 Tg CO and from 489 to 528 TgCH4 on average for the 2005–2008 period. CH4 emissions present significant interannual variability and a joint CO–CH4 fluxes analysis reveals that tropical biomass burning probably played a role in the recent increase of atmospheric methane.


2012 ◽  
Vol 9 (11) ◽  
pp. 4725-4737 ◽  
Author(s):  
K. Kawamura ◽  
K. Ono ◽  
E. Tachibana ◽  
B. Charriére ◽  
R. Sempéré

Abstract. Oxalic and other small dicarboxylic acids have been reported as important water-soluble organic constituents of atmospheric aerosols from different environments. Their molecular distributions are generally characterized by the predominance of oxalic acid (C2) followed by malonic (C3) and/or succinic (C4) acids. In this study, we collected marine aerosols from the Arctic Ocean during late summer in 2009 when sea ice was retreating. The marine aerosols were analyzed for the molecular distributions of dicarboxylic acids as well as ketocarboxylic acids and α-dicarbonyls to better understand the source of water-soluble organics and their photochemical processes in the high Arctic marine atmosphere. We found that diacids are more abundant than ketoacids and α-dicarbonyls, but their concentrations are generally low (< 30 ng m−3), except for one sample (up to 70 ng m−3) that was collected near the mouth of Mackenzie River during clear sky condition. Although the molecular compositions of diacids are in general characterized by the predominance of oxalic acid, a depletion of C2 was found in two samples in which C4 became the most abundant. Similar depletion of oxalic acid has previously been reported in the Arctic aerosols collected at Alert after polar sunrise and in the summer aerosols from the coast of Antarctica. Because the marine aerosols that showed a depletion of C2 were collected under the overcast and/or foggy conditions, we suggest that a photochemical decomposition of oxalic acid may have occurred in aqueous phase of aerosols over the Arctic Ocean via the photo dissociation of oxalate-Fe (III) complex. We also determined stable carbon isotopic compositions (δ13C) of bulk aerosol carbon and individual diacids. The δ13C of bulk aerosols showed −26.5‰ (range: −29.7 to −24.7‰, suggesting that marine aerosol carbon is derived from both terrestrial and marine organic materials. In contrast, oxalic acid showed much larger δ13C values (average: −20.9‰, range: −24.7‰ to −17.0‰) than those of bulk aerosol carbon. Interestingly, δ13C values of oxalic acid were higher than C3 (av. −26.6‰) and C4 (−25.8‰) diacids, suggesting that oxalic acid is enriched with 13C due to its photochemical processing (aging) in the marine atmosphere.


Sign in / Sign up

Export Citation Format

Share Document