scholarly journals Interactive comment on “Aircraft observations of water-soluble dicarboxylic acids in the aerosols over China“ by Yan-lin Zhang et al.

2016 ◽  
Author(s):  
Yanlin Zhang
2016 ◽  
Author(s):  
Yan-Lin Zhang ◽  
Kimitaka Kawamura ◽  
Ping Qing Fu ◽  
Suresh K. R. Boreddy ◽  
Tomomi Watanabe ◽  
...  

Abstract. Vertical profiles of low molecular weight dicarboxylic acids, related organic compounds and SOA tracer compounds in particle phase have not yet been simultaneously explored in East Asia, although there is growing evidence that aqueous phase oxidation of volatile organic compounds may be responsible for the elevated organic aerosols (OA) in the free troposphere. Here, we found consistently good correlation of oxalic acid, the most abundant organics globally, with its precursors as well as biogenic-derived secondary OA (SOA) compounds in Chinese tropospheric aerosols by aircraft measurements. Anthropogenically derived dicarboxylic acids (i.e., C5 and C6 diacids) at high altitudes were 4–20 times higher than those from surface measurements and even occasionally dominant over oxalic acid at altitude higher than 2 km, which is in contrast to the predominance of oxalic acid previously reported globally including the tropospheric and surface aerosols. This indicates an enhancement of tropospheric SOA formation from anthropogenic precursors. Furthermore, oxalic acid-tosulfate ratio maximized at altitude of ~2 km, explaining aqueous-phase SOA production that was supported by good correlations with predicted liquid water content, organic carbon and biogenic SOA tracers. These results demonstrate that elevated oxalic acid and related SOA compounds from both the anthropogenic and biogenic sources may substantially contribute to tropospheric OA burden over polluted regions of China, implying aerosol-associated climate effects and intercontinental transport.


2016 ◽  
Author(s):  
Yan-Lin Zhang ◽  
Kimitaka Kawamura ◽  
Ping Qing Fu ◽  
Suresh K. R. Boreddy ◽  
Tomomi Watanabe ◽  
...  

2016 ◽  
Vol 16 (10) ◽  
pp. 6407-6419 ◽  
Author(s):  
Yan-Lin Zhang ◽  
Kimitaka Kawamura ◽  
Ping Qing Fu ◽  
Suresh K. R. Boreddy ◽  
Tomomi Watanabe ◽  
...  

Abstract. Vertical profiles of dicarboxylic acids, related organic compounds and secondary organic aerosol (SOA) tracer compounds in particle phase have not yet been simultaneously explored in East Asia, although there is growing evidence that aqueous-phase oxidation of volatile organic compounds may be responsible for the elevated organic aerosols (OA) in the troposphere. Here, we found consistently good correlation of oxalic acid, the most abundant individual organic compounds in aerosols globally, with its precursors as well as biogenic-derived SOA compounds in Chinese tropospheric aerosols by aircraft measurements. Anthropogenically derived dicarboxylic acids (i.e., C5 and C6 diacids) at high altitudes were 4–20 times higher than those from surface measurements and even occasionally dominant over oxalic acid at altitudes higher than 2 km, which is in contrast to the predominance of oxalic acid previously reported globally including the tropospheric and surface aerosols. This indicates an enhancement of tropospheric SOA formation from anthropogenic precursors. Furthermore, oxalic acid-to-sulfate ratio maximized at altitudes of  ∼  2 km, explaining aqueous-phase SOA production that was supported by good correlations with predicted liquid water content, organic carbon and biogenic SOA tracers. These results demonstrate that elevated oxalic acid and related SOA compounds from both the anthropogenic and biogenic sources may substantially contribute to tropospheric OA burden over polluted regions of China, implying aerosol-associated climate effects and intercontinental transport.


2020 ◽  
Vol 224 ◽  
pp. 103812
Author(s):  
Mir Md. Mozammal Hoque ◽  
Kimitaka Kawamura ◽  
Tomohiro Nagayama ◽  
Bhagawati Kunwar ◽  
Edward T. Peltzer ◽  
...  

2019 ◽  
Author(s):  
Rachel A. Braun ◽  
Mojtaba Azadi Aghdam ◽  
Paola Angela Bañaga ◽  
Grace Betito ◽  
Maria Obiminda Cambaliza ◽  
...  

Abstract. This study analyzes mechanisms of long-range transport of aerosol and aerosol chemical characteristics in and around East and Southeast Asia. Ground-based size-resolved aerosol measurements collected at the Manila Observatory in Metro Manila, Philippines from July–October 2018 were used to identify and contrast high and low aerosol loading events. Multiple data sources, including models, remote-sensing, and in situ measurements, are used to analyze the impacts of long-range aerosol transport on Metro Manila and the conditions at the local and synoptic scales facilitating this transport. Evidence of long-range transport of biomass burning aerosol from the Maritime Continent was identified through model results and the presence of biomass burning tracers (e.g. K, Rb) in the ground-based measurements. The impacts of emissions transported from continental East Asia are also identified; for one of the events analyzed, this transport was facilitated by the nearby passage of a typhoon. Changes in the aerosol size distributions, water-soluble chemical composition, and contributions of various organic aerosol species to the total water-soluble organic aerosol were examined for the different cases. The events impacted by biomass burning transport had the overall highest concentration of water-soluble organic acids, while the events impacted by long-range transport from continental East Asia, showed high percent contributions from shorter chain dicarboxylic acids (i.e. oxalate) that are often representative of photochemical and aqueous processing in the atmosphere. The low aerosol loading event was subject to a larger precipitation accumulation than the high aerosol events, indicative of wet scavenging as an aerosol sink in the study region. This low aerosol event was characterized by a larger relative contribution from supermicrometer aerosols and had a higher percent contribution from longer-chain dicarboxylic acids (i.e. maleate) to the water-soluble organic aerosol fraction. Results of this study have implications for better understanding of the transport and chemical characteristics of aerosol in a highly-populated region that has thus far been difficult to measure through remote-sensing methods. Furthermore, findings associated with the effects of air mass mixing on aerosol physiochemical properties are applicable to other global regions impacted by both natural and anthropogenic sources.


2020 ◽  
Author(s):  
Wanyu Zhao ◽  
Hong Ren ◽  
Kimitaka Kawamura ◽  
Huiyun Du ◽  
Xueshun Chen ◽  
...  

Abstract. Vertical distribution of dicarboxylic acids, oxoacids, α-dicarbonyls, and other organic tracer compounds in fine aerosols (PM2.5) was investigated from the ground surface (8 m) to 260 m at a 325-meter meteorological tower in Beijing in the summer of 2015. Results showed that the concentrations of oxalic acid (C2), the predominant diacid, were more abundant at 120 m (210 ± 154 ng m−3) and 260 m (220 ± 140 ng m−3) than those at the ground level (160 ± 90 ng m−3). Concentrations of phthalic acid (Ph) decreased with the increase of heights, demonstrating that the vehicular exhausts at the ground surface was the main contributor. Positive correlations were noteworthy for C2/total diacids with mass ratios of C2 to main oxoacids (Pyr, ωC2) and α-dicarbonyls (Gly, MeGly) in polluted days (0.42 ≤ r2 ≤ 0.65), especially at the ground level. In clean days, the ratios of carbon content in oxalic acid to water soluble organic carbon (C2-C/WSOC) showed larger values at 120 m and 260 m than those at the ground surface. However, in polluted days, the C2-C/WSOC ratio mainly reached its maximum at the ground level. These phenomena may indicate the enhanced contribution of aqueous-phase oxidation to oxalic acid in polluted days. Combined with the influence of wind field, total diacids, oxoacids and α-dicarbonyls decreased by 22 %–58 % under the control on anthropogenic activities during the 2015 Victory Parade period. Furthermore, the PMF results showed that the secondary formation routes (secondary sulfate formation and secondary nitrate formation) were the dominant contributors (37–44 %) to organic acids, followed by biomass burning (25–30 %) and motor vehicles (18–24 %). In this study, the organic acids at the ground level were largely associated with local traffic emissions, while the long-range atmospheric transport followed by photochemical aging contributed more to diacids and related compounds in the boundary layer over Beijing than the ground surface.


2010 ◽  
Vol 10 (13) ◽  
pp. 6087-6096 ◽  
Author(s):  
G. Wang ◽  
M. Xie ◽  
S. Hu ◽  
S. Gao ◽  
E. Tachibana ◽  
...  

Abstract. Dicarboxylic acids (C2–C10), metals, elemental carbon (EC), organic carbon (OC), and stable isotopic compositions of total carbon (TC) and total nitrogen (TN) were determined for PM10 samples collected at three urban and one suburban sites of Baoji, an inland city of China, during winter and spring 2008. Oxalic acid (C2) was the dominant diacid, followed by succinic (C4) and malonic (C3) acids. Total diacids in the urban and suburban areas were 1546±203 and 1728±495 ng m−3 during winter and 1236±335 and 1028±193 ng m−3 during spring. EC in the urban and the suburban atmospheres were 17±3.8 and 8.0±2.1 μg m−3 during winter and 20±5.9 and 7.1±2.7 μg m−3 during spring, while OC at the urban and suburban sites were 74±14 and 51±7.9 μg m−3 in winter and 51±20 and 23±6.1 μg m−3 in spring. Secondary organic carbon (SOC) accounted for 38±16% of OC in winter and 28±18% of OC in spring, suggesting an enhanced photochemical production of secondary organic aerosols in winter under an inversion layer development. Total metal elements in winter and spring were 34±10 and 61±27 μg m−3 in the urban air and 18±7 and 32±23 μg m−3 in the suburban air. A linear correlation (r2>0.8 in winter and r2>0.6 in spring) was found between primary organic carbon (POC) and Ca2+/Fe, together with a strong dependence of pH value of sample extracts on water-soluble inorganic carbon, suggesting fugitive dust as an important source of the airborne particles. Polycyclic aromatic hydrocarbons (PAHs), sulfate, and Pb in the samples well correlated each other (r2>0.6) in winter, indicating an importance of emissions from coal burning for house heating. Stable carbon isotope compositions of TC (δ13C) became higher with an increase in the concentration ratios of C2/OC due to aerosol aging. In contrast, nitrogen isotope compositions of TN (δ15N) became lower with an increases in the mass ratios of NH4+/PM10 and NO3−/PM10, which is possibly caused by an enhanced adsorption and/or condensation of gaseous NH3 and HNO3 onto particles.


1993 ◽  
Vol 71 (12) ◽  
pp. 2095-2101 ◽  
Author(s):  
Ma Pilar Bosch ◽  
José Luis Parra ◽  
Francisco Sánchez-Baeza

The physicochemical behaviour of bolaamphiphile derivatives with an anionic, a cationic, or a non-ionic polar group and their mixtures is studied mainly by surface tension measurements, quasi-elastic light-scattering studies, 1H NMR spectroscopy, and surface monolayers. Bolaamphiphiles are synthesized by classical methods from a non-expensive mixture of α,ω-dicarboxylic acids, obtained by thermal Diels–Alder type cyclization of methyl 10-E,12-E linoleate, obtained from tall oil. The anionic and cationic bolaamphiphiles synthesized are water soluble and form stable monolayers when they are compressed. The anionic and the cationic bolaamphiphiles with an iodide atom as counter-anion show a behaviour between liquid-condensed and liquid-expanded. The other synthesized cationic bolaamphiphiles and the (1:1) mixtures of anionic–cationic bolaamphiphiles behave as liquid-condensed.


Sign in / Sign up

Export Citation Format

Share Document