Surface ozone and land-atmosphere coupling

Author(s):  
Tamara Emmerichs ◽  
Huug Ouwersloot ◽  
Astrid Kerkweg ◽  
Silvano Fares ◽  
Ivan Mammarella ◽  
...  

<p>Surface ozone is a harmful air pollutant, heavily influenced by chemical production and loss processes. Dry deposition to vegetation is a relevant loss process responsible for 20 % of the total tropospheric ozone loss. Its parametrization in atmospheric chemistry models represents a major source of uncertainty for the global tropospheric ozone budget and might account for the mismatch with observations. The model used in this study, the Modular Earth Submodel System (MESSy2) linked to ECHAM5 as atmospheric circulation model (EMAC) is no exception. Like many global models, EMAC employs a “resistances in series” scheme with the major surface deposition via plant stomata which is hardly sensitive to meteorology depending only on solar radiation. Unlike many global models, however, EMAC uses a simplified high resistance for non-stomatal deposition which makes this pathway negligible.                             </p><p>Hence, a revision of the dry deposition scheme of EMAC is desirable. The scheme has been extended with empirical adjustment factors to predict stomatal responses to temperature and vapour pressure deficit. Furthermore, an explicit formulation of humidity depending non-stomatal deposition at the leaf surface (cuticle) has been implemented based on established schemes. Next, the soil moisture availability function for plants has been critically reviewed and modified in order to avoid a stomatal closure where the model shows a strong soil dry bias, e.g. Amazon basin in dry season.</p><p>The last part of the presentation will show comparisons of dry deposition velocities and fluxes comparing simulations with data obtained from four experimental sites where ozone deposition is measured with micrometeorological techniques. The impacts of the changes on daily and seasonal patterns of ozone dry deposition will be discussed with a highlight on surface ozone, global distribution and budget.</p>

2021 ◽  
Author(s):  
Tamara Emmerichs ◽  
Bruno Franco ◽  
Catherine Wespes ◽  
Simon Rosanka ◽  
Domenico Taraborrelli

<p>Near-surface ozone is a harmful air pollutant, which is not only controlled by chemical production and loss processes.  The major removal process of near-surface ozone is dry deposition accounting for 20 % of the total tropospheric ozone loss. Due to its significance, parameterizations used in atmospheric chemistry models represent a major source of uncertainty for tropospheric ozone simulations. This uncertainty might be one of the reasons why global models tend to overestimate ozone, when compared to observations. The model used in this study, the global atmospheric model ECHAM5/MESSy (EMAC), is no exception. Like most global models, EMAC employs a “resistances in series” scheme, which is hardly sensitive to local meteorological conditions (e.g. humidity) and lacks non-stomatal deposition. In this study, these missing features have been implemented in EMAC affecting not only the deposition of ozone but also the removal of ozone precursors, resulting in lower chemical production of ozone.</p><p>Furthermore, near-surface ozone may be significantly impacted by water vapour forming complexes with peroxy radicals. The role of water in the reaction of HO<sub>2</sub> radical with itself and nitrogen oxides is known from the literature. However, in current models only the former is considered by assuming a linear dependence on water concentrations. Recent experimental evidence for the significant role of water on the kinetics of one of the most important reaction for ozone chemistry, namely NO<sub>2</sub> + OH, has been published. Here, the available kinetic data for the HO<sub>x</sub> + NO<sub>x</sub> reactions have been critically re-assessed and included in EMAC to test its global significance. Additionally, we considered the representation of isoprene and nitrous acid (HONO) as important oxidants for lower tropospheric chemistry. Namely, for isoprene emissions we added a drought stress factor which enables a higher sensitivity to meteorology leading to reduced emissions. Also, we firstly implemented soil emissions of HONO which is known as a missing source in models. The implications of these modifications on the global tropospheric composition are analysed, focusing on near-surface ozone and related precursors. The improved representation of ozone in EMAC is demonstrated using measurements from the Infrared Atmospheric Sounding Interferometers (IASI), the Tropospheric Ozone Assessment Report (TOAR) database and from the Trajectory-mapped Ozonesonde dataset for the Stratosphere and Troposphere (TOST). The overall changes might help to reduce the uncertainty and overestimation of models predicting near-surface ozone.</p>


2021 ◽  
Author(s):  
Tamara Emmerichs ◽  
Bruno Franco ◽  
Catherine Wespes ◽  
Vinod Kumar ◽  
Andrea Pozzer ◽  
...  

Abstract. Near-surface ozone is an harmful air pollutant, which is determined to a considerable extent by weather-controlled processes, and may be significantly impacted by water vapour forming complexes with peroxy radicals. The role of water in the reaction of HO2 radical with nitrogen oxides is known from the literature, and in current models the water complex is considered by assuming a linear dependence on water concentrations. In fact, recent experimental evidence has been published, showing the significant role of water on the kinetics of one of the most important reaction for ozone chemistry, namely NO2 + OH. Here, the available kinetic data for the HOx + NOx reactions have been included in the atmospheric chemistry model ECHAM5/MESSy (EMAC) to test its global significance. Among the modified kinetics, the newly added HNO3 channel from HO2 + NO, dominates, significantly reducing NO2. A major removal process of near-surface ozone is dry deposition accounting for 20 % of the total tropospheric ozone loss mostly occurring over vegetation. However, parameterizations for modelling dry deposition represent a major source of uncertainty for tropospheric ozone simulations. This potentially belongs to the reasons why global models, such as EMAC used here, overestimate ozone with respect to observations. In fact, the employed parameterization is hardly sensitive to local meteorological conditions (e.g., humidity) and lacks non-stomatal deposition. In this study, a dry deposition scheme including these features have been used in EMAC, affecting not only the deposition of ozone but of its precursors, resulting in lower chemical production of ozone. Additionally, we improved the emissions of isoprene and nitrous acid (HONO). Namely, for isoprene emissions we have accounted for the impact of drought stress which confers a higher model sensitivity to meteorology leading to reduced annual emissions down to 32 %. For HONO, we have implemented soil emissions, which depend on soil moisture and thus on precipitation. We estimate for the first time a global source strength of 7 Tg(N) a−1. Furthermore, the usage of a parameterization for the production of lightning NOx that depends on cloud top height contributes to a more realistic representation of NO2 columns over remote oceans with respect to the satellite measurements of the Ozone Monitoring Instrument (OMI). The combination of all the model modifications reduces the simulated global ozone burden by ≈ 20 % to 337 Tg, which is in better agreement with recent estimates. By comparing simulation results with measurements from the Infrared Atmospheric Sounding Interferometer (IASI) and the Tropospheric Ozone Assessment Report (TOAR) databases (of 2009) we demonstrate an overall reduction of the ozone bias by a factor of 2.


2021 ◽  
Vol 14 (1) ◽  
pp. 495-519
Author(s):  
Tamara Emmerichs ◽  
Astrid Kerkweg ◽  
Huug Ouwersloot ◽  
Silvano Fares ◽  
Ivan Mammarella ◽  
...  

Abstract. Dry deposition to vegetation is a major sink of ground-level ozone and is responsible for about 20 % of the total tropospheric ozone loss. Its parameterization in atmospheric chemistry models represents a significant source of uncertainty for the global tropospheric ozone budget and might account for the mismatch with observations. The model used in this study, the Modular Earth Submodel System version 2 (MESSy2) linked to the fifth-generation European Centre Hamburg general circulation model (ECHAM5) as an atmospheric circulation model (EMAC), is no exception. Like many global models, EMAC employs a “resistance in series” scheme with the major surface deposition via plant stomata which is hardly sensitive to meteorology, depending only on solar radiation. Unlike many global models, however, EMAC uses a simplified high resistance for non-stomatal deposition which makes this pathway negligible in the model. However, several studies have shown this process to be comparable in magnitude to the stomatal uptake, especially during the night over moist surfaces. Hence, we present here a revised dry deposition in EMAC including meteorological adjustment factors for stomatal closure and an explicit cuticular pathway. These modifications for the three stomatal stress functions have been included in the newly developed MESSy VERTEX submodel, i.e. a process model describing the vertical exchange in the atmospheric boundary layer, which will be evaluated for the first time here. The scheme is limited by a small number of different surface types and generalized parameters. The MESSy submodel describing the dry deposition of trace gases and aerosols (DDEP) has been revised accordingly. The comparison of the simulation results with measurement data at four sites shows that the new scheme enables a more realistic representation of dry deposition. However, the representation is strongly limited by the local meteorology. In total, the changes increase the dry deposition velocity of ozone up to a factor of 2 globally, whereby the highest impact arises from the inclusion of cuticular uptake, especially over moist surfaces. This corresponds to a 6 % increase of global annual dry deposition loss of ozone resulting globally in a slight decrease of ground-level ozone but a regional decrease of up to 25 %. The change of ozone dry deposition is also reasoned by the altered loss of ozone precursors. Thus, the revision of the process parameterization as documented here has, among others, the potential to significantly reduce the overestimation of tropospheric ozone in global models.


Elem Sci Anth ◽  
2014 ◽  
Vol 2 ◽  
Author(s):  
O. R. Cooper ◽  
D. D. Parrish ◽  
J. Ziemke ◽  
N. V. Balashov ◽  
M. Cupeiro ◽  
...  

Abstract Tropospheric ozone plays a major role in Earth’s atmospheric chemistry processes and also acts as an air pollutant and greenhouse gas. Due to its short lifetime, and dependence on sunlight and precursor emissions from natural and anthropogenic sources, tropospheric ozone’s abundance is highly variable in space and time on seasonal, interannual and decadal time-scales. Recent, and sometimes rapid, changes in observed ozone mixing ratios and ozone precursor emissions inspired us to produce this up-to-date overview of tropospheric ozone’s global distribution and trends. Much of the text is a synthesis of in situ and remotely sensed ozone observations reported in the peer-reviewed literature, but we also include some new and extended analyses using well-known and referenced datasets to draw connections between ozone trends and distributions in different regions of the world. In addition, we provide a brief evaluation of the accuracy of rural or remote surface ozone trends calculated by three state-of-the-science chemistry-climate models, the tools used by scientists to fill the gaps in our knowledge of global tropospheric ozone distribution and trends.


2020 ◽  
Author(s):  
Tamara Emmerichs ◽  
Astrid Kerkweg ◽  
Huug Ouwersloot ◽  
Silvano Fares ◽  
Ivan Mammarella ◽  
...  

Abstract. Dry deposition to vegetation is a major sink of ground-level ozone and is responsible for about 20 % of the total tropospheric ozone loss. Its parametrisation in atmospheric chemistry models represent a significant source of uncertainty for the global tropospheric ozone budget and might account for the mismatch with observations. The model used in this study, the Modular Earth Submodel System (MESSy2) linked to ECHAM5 as an atmospheric circulation model (EMAC), is no exception. Like many global models, EMAC employs a “resistance in series” scheme with the major surface deposition via plant stomata which is hardly sensitive to meteorology, depending only on solar radiation. Unlike many global models, however, EMAC uses a simplified high resistance for non-stomatal deposition which makes this pathway negligible in the model. However, several studies have shown this process to be comparable in magnitude to the stomatal uptake, especially during the night over moist surfaces. Hence, we present here a revised dry deposition in EMAC. The default dry deposition scheme has been extended with adjustment factors to predict stomatal responses to temperature and vapour pressure deficit. Furthermore, an explicit formulation of the non-stomatal deposition to the leaf surface (cuticle) dependent on humidity has been implemented based on established schemes. Finally, the soil moisture availability function for plants has been revised to be consistent with the simple hydrological model available in EMAC. This revision was necessary in order to avoid unrealistic stomatal closure where the model shows a strong soil dry bias, e.g. in the Amazon basin in the dry season. These modifications for the three stomatal stress functions have been included in the newly developed MESSy submodel VERTEX, i.e. a process model describing the vertical exchange in the atmospheric boundary layer, which will be evaluated for the first time here. The MESSy submodel describing the dry deposition of trace gases and aerosols (DDEP) has been revised accordingly. The comparison of the simulation results with measurement data at four sites shows that the new scheme enables a more realistic representation of dry deposition. However, the representation is strongly limited by the local meteorology. In total, the changes increase the dry deposition velocity of ozone up to a factor of 2 globally, whereby the highest impact arises from the inclusion of cuticular uptake, especially over moist surfaces. This corresponds to a 6 % increase of global annual dry deposition loss of ozone resulting globally in a slight decrease of ground-level ozone but a regional decrease of up to 25 %. Thus, the revision of the process parameterisation as documented here has the potential to significantly reduce the overestimation of tropospheric ozone in global models.


2017 ◽  
Author(s):  
Ben Newsome ◽  
Mat Evans

Abstract. Chemical rate constants determine the composition of the atmosphere and how this composition has changed over time. They are central to our understanding of climate change and air quality degradation. Atmospheric chemistry models, whether online or offline, box, regional or global use these rate constants. Expert panels synthesise laboratory measurements, making recommendations for the rate constants that should be used. This results in very similar or identical rate constants being used by all models. The inherent uncertainties in these recommendations are, in general, therefore ignored. We explore the impact of these uncertainties on the composition of the troposphere using the GEOS-Chem chemistry transport model. Based on the JPL and IUPAC evaluations we assess 50 mainly inorganic rate constants and 10 photolysis rates, through simulations where we increase the rate of the reactions to the 1σ upper value recommended by the expert panels. We assess the impact on 4 standard metrics: annual mean tropospheric ozone burden, surface ozone and tropospheric OH concentrations, and tropospheric methane lifetime. Uncertainty in the rate constants for NO2 + OH    M →  HNO3, OH + CH4 → CH3O2 + H2O and O3 + NO → NO2 + O2 are the three largest source of uncertainty in these metrics. We investigate two methods of assessing these uncertainties, addition in quadrature and a Monte Carlo approach, and conclude they give similar outcomes. Combining the uncertainties across the 60 reactions, gives overall uncertainties on the annual mean tropospheric ozone burden, surface ozone and tropospheric OH concentrations, and tropospheric methane lifetime of 11, 12, 17 and 17 % respectively. These are larger than the spread between models in recent model inter-comparisons. Remote regions such as the tropics, poles, and upper troposphere are most uncertain. This chemical uncertainty is sufficiently large to suggest that rate constant uncertainty should be considered when model results disagree with measurement. Calculations for the pre-industrial allow a tropospheric ozone radiative forcing to be calculated of 0.412 ± 0.062 Wm−2. This uncertainty (15 %) is comparable to the inter-model spread in ozone radiative forcing found in previous model-model inter-comparison studies where the rate constants used in the models are all identical or very similar. Thus the uncertainty of tropospheric ozone radiative forcing should expanded to include this additional source of uncertainty. These rate constant uncertainties are significant and suggest that refinement of supposedly well known chemical rate constants should be considered alongside other improvements to enhance our understanding of atmospheric processes.


2016 ◽  
Vol 16 (21) ◽  
pp. 14025-14039 ◽  
Author(s):  
Dimitris Akritidis ◽  
Andrea Pozzer ◽  
Prodromos Zanis ◽  
Evangelos Tyrlis ◽  
Bojan Škerlak ◽  
...  

Abstract. We study the contribution of tropopause folds in the summertime pool of tropospheric ozone over the eastern Mediterranean and the Middle East (EMME) with the aid of the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model. Tropopause fold events in EMAC simulations were identified with a 3-D labeling algorithm that detects folds at grid points where multiple crossings of the dynamical tropopause are computed. Subsequently the events featuring the largest horizontal and vertical extent were selected for further study. For the selection of these events we identified a significant contribution of the stratospheric ozone reservoir to the high concentrations of ozone in the middle and lower free troposphere over the EMME. A distinct increase of ozone is found over the EMME in the middle troposphere during summer as a result of the fold activity, shifting towards the southeast and decreasing altitude. We find that the interannual variability of near-surface ozone over the eastern Mediterranean (EM) during summer is related to that of both tropopause folds and ozone in the free troposphere.


2020 ◽  
Vol 13 (3) ◽  
pp. 1137-1153 ◽  
Author(s):  
Yadong Lei ◽  
Xu Yue ◽  
Hong Liao ◽  
Cheng Gong ◽  
Lin Zhang

Abstract. The terrestrial biosphere and atmospheric chemistry interact through multiple feedbacks, but the models of vegetation and chemistry are developed separately. In this study, the Yale Interactive terrestrial Biosphere (YIBs) model, a dynamic vegetation model with biogeochemical processes, is implemented into the Chemical Transport Model GEOS-Chem (GC) version 12.0.0. Within this GC-YIBs framework, leaf area index (LAI) and canopy stomatal conductance dynamically predicted by YIBs are used for dry deposition calculation in GEOS-Chem. In turn, the simulated surface ozone (O3) by GEOS-Chem affect plant photosynthesis and biophysics in YIBs. The updated stomatal conductance and LAI improve the simulated O3 dry deposition velocity and its temporal variability for major tree species. For daytime dry deposition velocities, the model-to-observation correlation increases from 0.69 to 0.76, while the normalized mean error (NME) decreases from 30.5 % to 26.9 % using the GC-YIBs model. For the diurnal cycle, the NMEs decrease by 9.1 % for Amazon forests, 6.8 % for coniferous forests, and 7.9 % for deciduous forests using the GC-YIBs model. Furthermore, we quantify the damaging effects of O3 on vegetation and find a global reduction of annual gross primary productivity by 1.5 %–3.6 %, with regional extremes of 10.9 %–14.1 % in the eastern USA and eastern China. The online GC-YIBs model provides a useful tool for discerning the complex feedbacks between atmospheric chemistry and the terrestrial biosphere under global change.


2021 ◽  
Vol 21 (24) ◽  
pp. 18393-18411
Author(s):  
Auke J. Visser ◽  
Laurens N. Ganzeveld ◽  
Ignacio Goded ◽  
Maarten C. Krol ◽  
Ivan Mammarella ◽  
...  

Abstract. Dry deposition is an important sink of tropospheric ozone that affects surface concentrations and impacts crop yields, the land carbon sink, and the terrestrial water cycle. Dry deposition pathways include plant uptake via stomata and non-stomatal removal by soils, leaf surfaces, and chemical reactions. Observational studies indicate that ozone deposition exhibits substantial temporal variability that is not reproduced by atmospheric chemistry models due to a simplified representation of vegetation uptake processes in these models. In this study, we explore the importance of stomatal and non-stomatal uptake processes in driving ozone dry deposition variability on diurnal to seasonal timescales. Specifically, we compare two land surface ozone uptake parameterizations – a commonly applied big leaf parameterization (W89; Wesely, 1989) and a multi-layer model (MLC-CHEM) constrained with observations – to multi-year ozone flux observations at two European measurement sites (Ispra, Italy, and Hyytiälä, Finland). We find that W89 cannot reproduce the diurnal cycle in ozone deposition due to a misrepresentation of stomatal and non-stomatal sinks at our two study sites, while MLC-CHEM accurately reproduces the different sink pathways. Evaluation of non-stomatal uptake further corroborates the previously found important roles of wet leaf uptake in the morning under humid conditions and soil uptake during warm conditions. The misrepresentation of stomatal versus non-stomatal uptake in W89 results in an overestimation of growing season cumulative ozone uptake (CUO), a metric for assessments of vegetation ozone damage, by 18 % (Ispra) and 28 % (Hyytiälä), while MLC-CHEM reproduces CUO within 7 % of the observation-inferred values. Our results indicate the need to accurately describe the partitioning of the ozone atmosphere–biosphere flux over the in-canopy stomatal and non-stomatal loss pathways to provide more confidence in atmospheric chemistry model simulations of surface ozone mixing ratios and deposition fluxes for large-scale vegetation ozone impact assessments.


2020 ◽  
Author(s):  
Thomas Thorp ◽  
Stephen R. Arnold ◽  
Richard J. Pope ◽  
Dominic V. Spracklen ◽  
Luke Conibear ◽  
...  

Abstract. We use a regional chemistry transport model (WRF-Chem) in conjunction with surface observations of tropospheric ozone and Ozone Monitoring Instrument (OMI) satellite retrievals of tropospheric column NO2 to evaluate processes controlling the regional distribution of tropospheric ozone over Western Siberia for late-spring and summer in 2011. This region hosts a range of anthropogenic and natural ozone precursor sources, and serves as a gateway for near-surface transport of Eurasian pollution to the Arctic. However, there is a severe lack of in-situ observations to constrain tropospheric ozone sources and sinks in the region. We show widespread negative bias in WRF-Chem tropospheric column NO2 when compared to OMI satellite observations from May – August, which is reduced when using ECLIPSE v5a emissions (FMB= -0.82 to -0.73) compared with the EDGAR-HTAP-2 emissions data (FMB= -0.80 to -0.70). Despite the large negative bias, the spatial correlations between model and observed NO2 columns suggest that the spatial pattern of NOx sources in the region is well represented. Based on ECLIPSE v5a emissions, we assess the influence of the two dominant anthropogenic emission sectors (transport and energy) and vegetation fires on surface NOx and ozone over Siberia and the Russian Arctic. Our results suggest regional ozone is more sensitive to anthropogenic emissions, particularly from the transport sector, and the contribution from fire emissions maximises in June and is largely confined to latitudes south of 60° N. Large contributions to surface ozone from energy emissions are simulated in April north of 60° N, due to emissions associated with oil and gas extraction. Ozone dry deposition fluxes from the model simulations show that the dominant ozone dry deposition sink in the region is to forest, averaging 6.0 Tg of ozone per month, peaking at 9.1 Tg of ozone deposition during June. The impact of fires on ozone dry deposition within the domain is small compared to anthropogenic emissions, and is negligible north of 60° N. Overall, our results suggest that surface ozone in the region is controlled by an interplay between seasonality in atmospheric transport patterns, vegetation dry deposition, and a dominance of transport and energy sector emissions.


Sign in / Sign up

Export Citation Format

Share Document