scholarly journals Supplementary material to "New Particle Formation and impact on CCN concentrations in the boundary layer and free troposphere at the high altitude station of Chacaltaya (5240 m a.s.l.), Bolivia"

Author(s):  
C. Rose ◽  
K. Sellegri ◽  
I. Moreno ◽  
F. Velarde ◽  
M. Ramonet ◽  
...  
2016 ◽  
Author(s):  
C. Rose ◽  
K. Sellegri ◽  
I. Moreno ◽  
F. Velarde ◽  
M. Ramonet ◽  
...  

Abstract. Global models predict that new particle formation (NPF) is, in some environments, responsible for a substantial fraction of the total atmospheric particle number concentration and subsequently contribute significantly to cloud condensation nuclei (CCN) concentrations. NPF events were frequently observed at the highest atmospheric observatory in the world, Chacaltaya (5240 m a.s.l.), Bolivia. The present study focuses on the impact of NPF on CCN population. Neutral cluster and Air Ion Spectrometer and mobility particle size spectrometer measurements were simultaneously used to follow the growth of particles from cluster sizes down to ~ 2 nm up to CCN threshold sizes set to 50, 80 and 100 nm. Using measurements performed between January 1 and December 31 2012, we found that 61% of the 94 analysed events showed a clear particle growth and significant enhancement of the CCN-relevant particle number concentration. We evaluated the contribution of NPF events relative to the transport of pre-existing particles to the site. The averaged production of 50 nm particles during those events was 5072 cm−3, and 1481 cm−3 for 100 nm particles, with a larger contribution of NPF compared to transport, especially during the wet season. The data set was further segregated into boundary layer (BL) and free troposphere (FT) conditions at the site. The NPF frequency of occurrence was higher in the BL (48 %) compared to the FT (39 %). Particle condensational growth was more frequently observed for events initiated in the FT, but on average faster for those initiated in the BL, when the amount of condensable species was most probably larger. As a result, the potential to form new CCN was higher for events initiated in the BL (67 % against 56 % in the FT). In contrast, higher CCN number concentration increases were found when the NPF process initially occurred in the FT, under less polluted conditions. This work highlights the competition between particle growth and the removal of freshly nucleated particles by coagulation processes. The results support model predictions which suggest that NPF is an effective source of CCN in some environments, and thus may influence regional climate through cloud related radiative processes.


2020 ◽  
Author(s):  
Xuemei Wang ◽  
Daniel Grosvenor ◽  
Hamish Gordon ◽  
Meinrat O. Andreae ◽  
Ken Carslaw

<p>It has been estimated that over 50% of the present-day global low-level cloud condensation nuclei (CCN) are formed from new particle formation (NPF), and that this process has a substantial effect on the radiative properties of shallow clouds (Gordon et al. 2017). In contrast, we have a very limited understanding of how NPF affects deep convective clouds. Deep clouds could interact strongly with NPF because they extend into the high free troposphere where most new particles are formed, and they are responsible for most of the vertical transport of the nucleating vapours. Andreae et al. (2018) hypothesised from ACRIDICON-CHUVA campaign that organic gas molecules are transported by deep convection to the upper troposphere where they are oxidised and produce new particles, which are then be entrained into the boundary layer and grow to CCN-relevent sizes.</p><p>Here we study the interaction of deep convection and NPF using the United Kingdom Chemistry and Aerosols (UKCA) model coupled with the Cloud-AeroSol Interacting Microphyics (CASIM) embedded in the regional configuration of UK Met Office Hadley Centre Global Environment Model (HadGEM3). We simulate several days over a 1000 km region of the Amazon at 4 km resolution. We then compare the regional model, which resolves cloud up- and downdrafts, with the global model with parameterised convection and low resolution.</p><p>Our simulations highlight three findings. Firstly, solely using a binary H<sub>2</sub>SO<sub>4</sub>-H<sub>2</sub>O nucleation mechanism strongly underestimates total aerosol concentrations compared to observations by a factor of 1.5-8 below 3 km over the Amazon. This points to the potential role of an additional nucleation mechanism, most likely involving biogenic compounds that occurs throughout more of the free troposphere. Secondly, deep convection transports insoluble gases such as DMS and monoterpenes vertically but not SO<sub>2</sub> or H<sub>2</sub>SO<sub>4</sub>. The time scale for DMS oxidation (~ 1 day) is much longer than for monoterpene (1-2 hours), which points to the importance of simulating biogenic nucleation over the Amazon in a cloud-resolving model, while lower-resolution global models may adequately capture DMS effects on H<sub>2</sub>SO<sub>4</sub> nucleation. Finally, we also examine the Andreae et al (2018) hypothesis of aerosol supply to the boundary layer by quantifying cloud-free and cloudy up- and downdraft transport. The transport of newly formed aerosols into the boundary layer is 8 times greater in cloud-free regions than in the clouds, but these transport processes are of similar magnitude for large aerosols.</p>


2015 ◽  
Vol 15 (6) ◽  
pp. 8151-8189 ◽  
Author(s):  
C. Rose ◽  
K. Sellegri ◽  
E. Freney ◽  
R. Dupuy ◽  
A. Colomb ◽  
...  

Abstract. While atmospheric new particle formation (NPF) has been observed in various environments and was found to contribute significantly to the total aerosol particle concentration, the production of new particles over open seas is poorly documented in the literature. Nucleation events were detected and analysed over the Mediterranean Sea using two condensation particle counters and a Scanning Mobility Particle Sizer on-board the ATR-42 research aircraft during flights conducted between the 11 September and the 4 November 2012 in the framework of the HYMEX (HYdrological cycle in Mediterranean EXperiment) project. The main purpose of the present work was to characterize the spatial extent of the NPF process. Our findings show that nucleation is occurring over large areas above the Mediterranean Sea in all air mass types. Maximum concentrations of particles in the size range 5–10 nm (N5–10) do not systematically coincide with lower fetches (time spent by the air mass over the sea before sampling), and significant N5–10 values are found for fetches between 0 and 60 h depending on the air mass type. These observations suggest that nucleation events could be more influenced by processes occurring above the sea, rather than linked to synoptic history. The analysis of the vertical extent of nucleation demonstrates that the process is favoured at high altitude, above 1000 m, i.e. frequently in the free troposphere, and more especially between 2000 and 3000 m, where the nucleation frequency is close to 50%. This vertical distribution of nucleation is favoured by the gradients of several parameters, such as the condensation sink, the temperature and the relative humidity. The mixing of two air parcels could also explain the occurrence of nucleation at preferential altitudes. After they formed, particles slowly grow at high altitude to diameters of at least 30 nm while being poorly depleted by coagulation processes. Our analysis of the particle size distributions suggests that particle growth could decrease with increasing altitudes.


2015 ◽  
Vol 15 (6) ◽  
pp. 3413-3428 ◽  
Author(s):  
C. Rose ◽  
K. Sellegri ◽  
E. Asmi ◽  
M. Hervo ◽  
E. Freney ◽  
...  

Abstract. The formation of new aerosol particles in the atmosphere is a key process influencing the aerosol number concentration as well as the climate, in particular at high altitude, where the newly formed particles directly influence cloud formation. However, free tropospheric new particle formation (NPF) is poorly documented due to logistic limitations and complex atmospheric dynamics around high-altitude stations that make the observation of this day-time process challenging. Recent improvements in measurement techniques make now possible the detection of neutral clusters down to ~ 1 nm sizes, which opens new horizons in our understanding of the nucleation process. Indeed, only the charged fraction of clusters has been reported in the upper troposphere up to now. Here we report day-time concentrations of charged and neutral clusters (1 to 2.5 nm mobility diameter) recorded at the interface between the boundary layer (BL) and the FT as well as in the FT at the altitude site of Puy de Dôme (1465 m a.s.l.), central France, between 10 and 29 February 2012. Our findings demonstrate that in the FT, and especially at the interface between the BL and the FT, the formation of 1.5 nm neutral clusters significantly exceeds the one of ionic clusters during NPF events, clearly indicating that they dominate in the nucleation process. We also observe that the total cluster concentration significantly increases during NPF events compared to the other days, which was not clearly observed for the charged cluster population in the past. During the studied period, the nucleation process does not seem to be sulfuric acid-limited and could be promoted by the transport of pollutants to the upper troposphere, coupled with low temperatures.


Sign in / Sign up

Export Citation Format

Share Document