scholarly journals On the Thermodynamic and Dynamic Aspects of Immersion Ice Nucleation

2017 ◽  
Author(s):  
Donifan Barahona

Abstract. Heterogeneous ice nucleation initiated by particles immersed within droplets is likely the main pathway of ice formation in the atmosphere. Theoretical models commonly used to describe this process assume that it mimics ice formation from the vapor, neglecting interactions unique to the liquid phase. This work introduces a new approach that accounts for such interactions by linking the ability of particles to promote ice formation to the modification of the properties of water near the particle-liquid interface. It is shown that the same mechanism that lowers the thermodynamic barrier for ice nucleation also tends to decrease the mobility of water molecules, hence the ice-liquid interfacial flux. Heterogeneous ice nucleation in the liquid phase is thus determined by the competition between thermodynamic and kinetic constraints to the formation and propagation of ice. At the limit, ice nucleation may be mediated by the dynamics of vicinal water instead of the nucleation work. This new ice nucleation regime is termed spinodal ice nucleation. Comparison of predicted nucleation rates against published data suggests that some materials of atmospheric relevance may nucleate ice in this regime.

2018 ◽  
Vol 18 (23) ◽  
pp. 17119-17141 ◽  
Author(s):  
Donifan Barahona

Abstract. Heterogeneous ice nucleation initiated by particles immersed within droplets is likely the main pathway of ice formation in the atmosphere. Theoretical models commonly used to describe this process assume that it mimics ice formation from the vapor, neglecting interactions unique to the liquid phase. This work introduces a new approach that accounts for such interactions by linking the ability of particles to promote ice formation to the modification of the properties of water near the particle–liquid interface. It is shown that the same mechanism that lowers the thermodynamic barrier for ice nucleation also tends to decrease the mobility of water molecules, hence the ice–liquid interfacial flux. Heterogeneous ice nucleation in the liquid phase is thus determined by the competition between thermodynamic and kinetic constraints to the formation and propagation of ice. At the limit, ice nucleation may be mediated by kinetic factors instead of the nucleation work. This new ice nucleation regime is termed spinodal ice nucleation. The comparison of predicted nucleation rates against published data suggests that some materials of atmospheric relevance may nucleate ice in this regime.


1966 ◽  
Vol 44 (10) ◽  
pp. 2431-2445 ◽  
Author(s):  
J. Maybank ◽  
N. Barthakur

The problem of whether ice nucleation takes place more readily from the vapor directly to the solid, or via an intermediate liquid phase has been studied for several of the more efficient amino-acid nucleators. It has been shown that the threshold temperatures observed in cloud chamber tests are in fact those of the material acting as freezing nuclei (i.e. via the liquid phase), and any discrepancies between such tests and trials with bulk water may be accounted for satisfactorily by partial destruction of the nucleus surface by the water. Investigations on ice formation about airborne particles and on macroscopic amino-acid crystals have shown that for certain of these substances a transition in behavior takes place around −20 °C. Below this temperature, ice formation no longer requires saturation conditions with respect to supercooled water and so the particles may be considered to act by converting the vapor directly to ice, and can, therefore, be designated sublimation nuclei.The major obstacle in the way of airborne particles acting as freezing nuclei has been the requirement that they act first as condensation centers. Under the conditions prevailing in supercooled clouds with vapor pressures equal to, or barely exceeding that of water saturation, condensation is unlikely on the somewhat hydrophobic surfaces of amino-acid particles. It has been shown, however, by using a radioactive tracer in small water droplets that droplet–particle collisions can occur. While not efficient, this process would permit a few particles in a cloud chamber experiment to act as freezing nuclei, thereby establishing the potential activity of the material itself.


2019 ◽  
Vol 76 (4) ◽  
pp. 1015-1029 ◽  
Author(s):  
Romy Ullrich ◽  
Corinna Hoose ◽  
Daniel J. Cziczo ◽  
Karl D. Froyd ◽  
Joshua P. Schwarz ◽  
...  

Abstract The contribution of heterogeneous ice nucleation to the formation of cirrus cloud ice crystals is still not well quantified. This results in large uncertainties when predicting cirrus radiative effects and their role in Earth’s climate system. The goal of this case study is to simulate the composition, and thus activation conditions, of ice nucleating particles (INPs) to evaluate their contribution to heterogeneous cirrus ice formation in relation to homogeneous ice nucleation. For this, the regional model COSMO—Aerosols and Reactive Trace Gases (COSMO-ART) was used to simulate a synoptic cirrus cloud over Texas on 13 April 2011. The simulated INP composition was then compared to measured ice residual particle (IRP) composition from the actual event obtained during the NASA Midlatitude Airborne Cirrus Properties Experiment (MACPEX) aircraft campaign. These IRP measurements indicated that the dominance of heterogeneous ice nucleation was mainly driven by mineral dust with contributions from a variety of other particle types. Applying realistic activation thresholds and concentrations of airborne transported mineral dust and biomass-burning particles, the model implementing the heterogeneous ice nucleation parameterization scheme of Ullrich et al. is able to reproduce the overall dominating ice formation mechanism in contrast to the model simulation with the scheme of Phillips et al. However, the model showed flaws in reproducing the IRP composition.


2021 ◽  
Vol 21 (18) ◽  
pp. 13903-13930
Author(s):  
Robert Wagner ◽  
Luisa Ickes ◽  
Allan K. Bertram ◽  
Nora Els ◽  
Elena Gorokhova ◽  
...  

Abstract. Sea spray aerosol particles are a recognised type of ice-nucleating particles under mixed-phase cloud conditions. Entities that are responsible for the heterogeneous ice nucleation ability include intact or fragmented cells of marine microorganisms as well as organic matter released by cell exudation. Only a small fraction of sea spray aerosol is transported to the upper troposphere, but there are indications from mass-spectrometric analyses of the residuals of sublimated cirrus particles that sea salt could also contribute to heterogeneous ice nucleation under cirrus conditions. Experimental studies on the heterogeneous ice nucleation ability of sea spray aerosol particles and their proxies at temperatures below 235 K are still scarce. In our article, we summarise previous measurements and present a new set of ice nucleation experiments at cirrus temperatures with particles generated from sea surface microlayer and surface seawater samples collected in three different regions of the Arctic and from a laboratory-grown diatom culture (Skeletonema marinoi). The particles were suspended in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud chamber and ice formation was induced by expansion cooling. We confirmed that under cirrus conditions, apart from the ice-nucleating entities mentioned above, also crystalline inorganic salt constituents can contribute to heterogeneous ice formation. This takes place at temperatures below 220 K, where we observed in all experiments a strong immersion freezing mode due to the only partially deliquesced inorganic salts. The inferred ice nucleation active surface site densities for this nucleation mode reached a maximum of about 5×1010 m−2 at an ice saturation ratio of 1.3. Much smaller densities in the range of 108–109 m−2 were observed at temperatures between 220 and 235 K, where the inorganic salts fully deliquesced and only the organic matter and/or algal cells and cell debris could contribute to heterogeneous ice formation. These values are 2 orders of magnitude smaller than those previously reported for particles generated from microlayer suspensions collected in temperate and subtropical zones. While this difference might simply underline the strong variability of the number of ice-nucleating entities in the sea surface microlayer across different geographical regions, we also discuss how instrumental parameters like the aerosolisation method and the ice nucleation measurement technique might affect the comparability of the results amongst different studies.


2019 ◽  
Vol 116 (17) ◽  
pp. 8184-8189 ◽  
Author(s):  
Robert O. David ◽  
Claudia Marcolli ◽  
Jonas Fahrni ◽  
Yuqing Qiu ◽  
Yamila A. Perez Sirkin ◽  
...  

Ice nucleation in the atmosphere influences cloud properties, altering precipitation and the radiative balance, ultimately regulating Earth’s climate. An accepted ice nucleation pathway, known as deposition nucleation, assumes a direct transition of water from the vapor to the ice phase, without an intermediate liquid phase. However, studies have shown that nucleation occurs through a liquid phase in porous particles with narrow cracks or surface imperfections where the condensation of liquid below water saturation can occur, questioning the validity of deposition nucleation. We show that deposition nucleation cannot explain the strongly enhanced ice nucleation efficiency of porous compared with nonporous particles at temperatures below −40 °C and the absence of ice nucleation below water saturation at −35 °C. Using classical nucleation theory (CNT) and molecular dynamics simulations (MDS), we show that a network of closely spaced pores is necessary to overcome the barrier for macroscopic ice-crystal growth from narrow cylindrical pores. In the absence of pores, CNT predicts that the nucleation barrier is insurmountable, consistent with the absence of ice formation in MDS. Our results confirm that pore condensation and freezing (PCF), i.e., a mechanism of ice formation that proceeds via liquid water condensation in pores, is a dominant pathway for atmospheric ice nucleation below water saturation. We conclude that the ice nucleation activity of particles in the cirrus regime is determined by the porosity and wettability of pores. PCF represents a mechanism by which porous particles like dust could impact cloud radiative forcing and, thus, the climate via ice cloud formation.


2019 ◽  
Vol 5 (4) ◽  
pp. eaat9825 ◽  
Author(s):  
Shuwang Wu ◽  
Zhiyuan He ◽  
Jinger Zang ◽  
Shenglin Jin ◽  
Zuowei Wang ◽  
...  

Establishing a direct correlation between interfacial water and heterogeneous ice nucleation (HIN) is essential for understanding the mechanism of ice nucleation. Here, we study the HIN efficiency on polyvinyl alcohol (PVA) surfaces with different densities of hydroxyl groups. We find that the HIN efficiency increases with the decreasing hydroxyl group density. By explicitly considering that interfacial water molecules of PVA films consist of “tightly bound water,” “bound water,” and “bulk-like water,” we reveal that bulk-like water can be correlated directly to the HIN efficiency of surfaces. As the density of hydroxyl groups decreases, bulk-like water molecules can rearrange themselves with a reduced energy barrier into ice due to the diminishing constraint by the hydroxyl groups on the PVA surface. Our study not only provides a new strategy for experimentally controlling the HIN efficiency but also gives another perspective in understanding the mechanism of ice nucleation.


2011 ◽  
Vol 11 (1) ◽  
pp. 3161-3180 ◽  
Author(s):  
D. Niedermeier ◽  
R. A. Shaw ◽  
S. Hartmann ◽  
H. Wex ◽  
T. Clauss ◽  
...  

Abstract. Heterogeneous ice nucleation, a primary pathway for ice formation in the atmosphere, has been described alternately as being stochastic, in direct analogy with homogeneous nucleation, or singular, with ice nuclei initiating freezing at deterministic temperatures. We present an idealized model that bridges these stochastic and singular descriptions of heterogeneous ice nucleation. This "soccer ball" model treats statistically similar particles as being covered with surface sites (patches of finite area) characterized by different nucleation barriers, but with each surface site following the stochastic nature of ice embryo formation. The model provides a phenomenological explanation for seemingly contradictory experimental results obtained in our research groups. We suggest that ice nucleation is fundamentally a stochastic process but that for realistic atmospheric particle populations this process can be masked by the heterogeneity of surface properties. Full evaluation of the model will require experiments with well characterized ice nucleating particles and the ability to vary both temperature and waiting time for freezing.


2021 ◽  
Author(s):  
Jonas Jakobsson ◽  
Vaughan Phillips ◽  
Thomas Bjerring-Kristensen

Abstract. The time dependence of ice-nucleating particle (INP) activity is known to exist, yet for simplicity it is often omitted in atmospheric models as an approximation. Hitherto only limited experimental work has been done to quantify this time dependency, for which published data are especially scarce regarding ambient aerosol samples and longer time scales. In this study, the time dependence of INP activity is quantified experimentally for ambient environmental samples. The experimental approach includes a series of hybrid experiments with alternating constant cooling and isothermal experiments using a recently developed cold-stage setup called the Lund University Cold-Stage (LUCS). This approach of observing ambient aerosol samples provides the optimum realism for representing their time dependence in any model. Six ambient aerosol samples were collected representing aerosol conditions likely influenced by these types of INPs: marine, mineral dust, continental pristine, continental polluted, combustion-related and rural continental aerosol. Active INP concentrations were seen to be augmented by about 40 % to 100 % (or 70 % to 200 %), depending on the sample, over 2 (or 10) hours. This degree of time dependence observed was comparable to that seen in previous published works. Our observations show that the minority of active ice nuclei (IN) with strong time dependency on hourly time scales display only weak time dependence on short time scales of a few minutes. A general tendency was observed for the natural time scale of the freezing to dilate increasingly with time. The fractional freezing rate was observed to steadily declines exponentially with the order of magnitude (logarithm) of the time since the start of isothermal conditions. A representation of time dependence for incorporation into schemes of heterogeneous ice nucleation that currently omit time dependence is proposed.


Atmosphere ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 140 ◽  
Author(s):  
Thomas Häusler ◽  
Lorenz Witek ◽  
Laura Felgitsch ◽  
Regina Hitzenberger ◽  
Hinrich Grothe

2011 ◽  
Vol 11 (16) ◽  
pp. 8767-8775 ◽  
Author(s):  
D. Niedermeier ◽  
R. A. Shaw ◽  
S. Hartmann ◽  
H. Wex ◽  
T. Clauss ◽  
...  

Abstract. Heterogeneous ice nucleation, a primary pathway for ice formation in the atmosphere, has been described alternately as being stochastic, in direct analogy with homogeneous nucleation, or singular, with ice nuclei initiating freezing at deterministic temperatures. We present an idealized, conceptual model to explore the transition between stochastic and singular ice nucleation. This "soccer ball" model treats particles as being covered with surface sites (patches of finite area) characterized by different nucleation barriers, but with each surface site following the stochastic nature of ice embryo formation. The model provides a phenomenological explanation for seemingly contradictory experimental results obtained in our research groups. Even with ice nucleation treated fundamentally as a stochastic process this process can be masked by the heterogeneity of surface properties, as might be typical for realistic atmospheric particle populations. Full evaluation of the model findings will require experiments with well characterized ice nucleating particles and the ability to vary both temperature and waiting time for freezing.


Sign in / Sign up

Export Citation Format

Share Document