scholarly journals Comparison of Modeled and Measured Ice Nucleating Particle Composition in a Cirrus Cloud

2019 ◽  
Vol 76 (4) ◽  
pp. 1015-1029 ◽  
Author(s):  
Romy Ullrich ◽  
Corinna Hoose ◽  
Daniel J. Cziczo ◽  
Karl D. Froyd ◽  
Joshua P. Schwarz ◽  
...  

Abstract The contribution of heterogeneous ice nucleation to the formation of cirrus cloud ice crystals is still not well quantified. This results in large uncertainties when predicting cirrus radiative effects and their role in Earth’s climate system. The goal of this case study is to simulate the composition, and thus activation conditions, of ice nucleating particles (INPs) to evaluate their contribution to heterogeneous cirrus ice formation in relation to homogeneous ice nucleation. For this, the regional model COSMO—Aerosols and Reactive Trace Gases (COSMO-ART) was used to simulate a synoptic cirrus cloud over Texas on 13 April 2011. The simulated INP composition was then compared to measured ice residual particle (IRP) composition from the actual event obtained during the NASA Midlatitude Airborne Cirrus Properties Experiment (MACPEX) aircraft campaign. These IRP measurements indicated that the dominance of heterogeneous ice nucleation was mainly driven by mineral dust with contributions from a variety of other particle types. Applying realistic activation thresholds and concentrations of airborne transported mineral dust and biomass-burning particles, the model implementing the heterogeneous ice nucleation parameterization scheme of Ullrich et al. is able to reproduce the overall dominating ice formation mechanism in contrast to the model simulation with the scheme of Phillips et al. However, the model showed flaws in reproducing the IRP composition.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Slobodan Nickovic ◽  
Bojan Cvetkovic ◽  
Slavko Petković ◽  
Vassilis Amiridis ◽  
Goran Pejanović ◽  
...  

AbstractIce particles in high-altitude cold clouds can obstruct aircraft functioning. Over the last 20 years, there have been more than 150 recorded cases with engine power-loss and damage caused by tiny cloud ice crystals, which are difficult to detect with aircraft radars. Herein, we examine two aircraft accidents for which icing linked to convective weather conditions has been officially reported as the most likely reason for catastrophic consequences. We analyze whether desert mineral dust, known to be very efficient ice nuclei and present along both aircraft routes, could further augment the icing process. Using numerical simulations performed by a coupled atmosphere-dust model with an included parameterization for ice nucleation triggered by dust aerosols, we show that the predicted ice particle number sharply increases at approximate locations and times of accidents where desert dust was brought by convective circulation to the upper troposphere. We propose a new icing parameter which, unlike existing icing indices, for the first time includes in its calculation the predicted dust concentration. This study opens up the opportunity to use integrated atmospheric-dust forecasts as warnings for ice formation enhanced by mineral dust presence.


2018 ◽  
Vol 18 (20) ◽  
pp. 15437-15450 ◽  
Author(s):  
Matthias Hummel ◽  
Corinna Hoose ◽  
Bernhard Pummer ◽  
Caroline Schaupp ◽  
Janine Fröhlich-Nowoisky ◽  
...  

Abstract. Primary ice formation, which is an important process for mixed-phase clouds with an impact on their lifetime, radiative balance, and hence the climate, strongly depends on the availability of ice-nucleating particles (INPs). Supercooled droplets within these clouds remain liquid until an INP immersed in or colliding with the droplet reaches its activation temperature. Only a few aerosol particles are acting as INPs and the freezing efficiency varies among them. Thus, the fraction of supercooled water in the cloud depends on the specific properties and concentrations of the INPs. Primary biological aerosol particles (PBAPs) have been identified as very efficient INPs at high subzero temperatures, but their very low atmospheric concentrations make it difficult to quantify their impact on clouds. Here we use the regional atmospheric model COSMO–ART to simulate the heterogeneous ice nucleation by PBAPs during a 1-week case study on a domain covering Europe. We focus on three highly ice-nucleation-active PBAP species, Pseudomonas syringae bacteria cells and spores from the fungi Cladosporium sp. and Mortierella alpina. PBAP emissions are parameterized in order to represent the entirety of bacteria and fungal spores in the atmosphere. Thus, only parts of the simulated PBAPs are assumed to act as INPs. The ice nucleation parameterizations are specific for the three selected species and are based on a deterministic approach. The PBAP concentrations simulated in this study are within the range of previously reported results from other modeling studies and atmospheric measurements. Two regimes of PBAP INP concentrations are identified: a temperature-limited and a PBAP-limited regime, which occur at temperatures above and below a maximal concentration at around −10 ∘C, respectively. In an ensemble of control and disturbed simulations, the change in the average ice crystal concentration by biological INPs is not statistically significant, suggesting that PBAPs have no significant influence on the average state of the cloud ice phase. However, if the cloud top temperature is below −15 ∘C, PBAP can influence the cloud ice phase and produce ice crystals in the absence of other INPs. Nevertheless, the number of produced ice crystals is very low and it has no influence on the modeled number of cloud droplets and hence the cloud structure.


2010 ◽  
Vol 37 (24) ◽  
pp. n/a-n/a ◽  
Author(s):  
Ryan C. Sullivan ◽  
Lorena Miñambres ◽  
Paul J. DeMott ◽  
Anthony J. Prenni ◽  
Christian M. Carrico ◽  
...  

2015 ◽  
Vol 15 (24) ◽  
pp. 35719-35752 ◽  
Author(s):  
K. Ignatius ◽  
T. B. Kristensen ◽  
E. Järvinen ◽  
L. Nichman ◽  
C. Fuchs ◽  
...  

Abstract. There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate deposition ice nucleation and thus influence cirrus cloud properties. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles. The SOA particles were produced from the ozone initiated oxidation of α-pinene in an aerosol chamber at temperatures in the range from −38 to −10 °C at 5–15 % relative humidity with respect to water to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. The ice nucleation ability of SOA particles with different sizes was investigated with a new continuous flow diffusion chamber. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA in the deposition mode for ice saturation ratios between 1.3 and 1.4 significantly below the homogeneous freezing limit. The maximum frozen fractions found at temperatures between −36.5 and −38.3 °C ranged from 6 to 20 % and did not depend on the particle surface area. Global modelling of monoterpene SOA particles suggests that viscous biogenic SOA particles are indeed present in regions where cirrus cloud formation takes place. Hence, they could make up an important contribution to the global ice nuclei (IN) budget.


2017 ◽  
Author(s):  
Donifan Barahona

Abstract. Heterogeneous ice nucleation initiated by particles immersed within droplets is likely the main pathway of ice formation in the atmosphere. Theoretical models commonly used to describe this process assume that it mimics ice formation from the vapor, neglecting interactions unique to the liquid phase. This work introduces a new approach that accounts for such interactions by linking the ability of particles to promote ice formation to the modification of the properties of water near the particle-liquid interface. It is shown that the same mechanism that lowers the thermodynamic barrier for ice nucleation also tends to decrease the mobility of water molecules, hence the ice-liquid interfacial flux. Heterogeneous ice nucleation in the liquid phase is thus determined by the competition between thermodynamic and kinetic constraints to the formation and propagation of ice. At the limit, ice nucleation may be mediated by the dynamics of vicinal water instead of the nucleation work. This new ice nucleation regime is termed spinodal ice nucleation. Comparison of predicted nucleation rates against published data suggests that some materials of atmospheric relevance may nucleate ice in this regime.


2018 ◽  
Author(s):  
Matthias Hummel ◽  
Corinna Hoose ◽  
Bernhard Pummer ◽  
Caroline E. Schaupp ◽  
Janine Fröhlich-Nowoisky ◽  
...  

Abstract. Primary ice formation, which is an important process for mixed-phase clouds with impact on their lifetime, radiative balance and hence the climate, strongly depends on the availability of ice nucleating particles (INPs). Supercooled droplets within these clouds remain liquid until an INP immersed in or colliding with to the droplet gets reaches its activation temperature. Only a few aerosol particles are acting as INPs and the freezing efficiency varies among them. Thus, the fraction of supercooled water in the cloud depends on the specific properties and concentrations of the INPs. Primary biological aerosol particles (PBAPs) have been identified as very efficient INPs at high subzero temperatures, but their very low atmospheric concentrations make it difficult to quantify their impact on clouds. Here we use the regional atmospheric model COSMO-ART to simulate the heterogeneous ice nucleation by PBAPs during a 1-week case study on a domain covering Europe. We focus on three highly ice nucleation active PBAP species, Pseudomonas syringae bacteria cells and spores from the fungi Cladosporium sp. and Mortierella alpina. PBAP emissions are parameterized in order to represent the entirety of bacteria and fungal spores in the atmosphere. Thus, only parts of the simulated PBAP are assumed to act as INP. The ice nucleation parameterizations are specific for the three selected species and are based on a deterministic approach. The PBAP concentrations simulated in this study are within the range of previously reported results from other modelling studies and atmospheric measurements. Two regimes of PBAP INP concentrations are identified: a temperature-limited and a PBAP-limited regime, which occur at temperatures above and below a maximal concentration at around −10 °C, respectively. In an ensemble of control and disturbed simulations, the change in the average ice crystal concentration by biological INPs is not statistically 1significant, suggesting that PBAP have no significant influence on the average state of the cloud ice phase. However, if the cloud top temperature is below −15 °C, PBAP can influence the cloud ice phase and produce ice crystals in the absence of other INPs. Nevertheless, the number of produced ice crystals is very low and it has no influence on the modelled number of cloud droplets and hence the cloud structure.


2016 ◽  
Author(s):  
David L. Mitchell ◽  
Anne Garnier ◽  
Melody Avery ◽  
Ehsan Erfani

Abstract. There are two fundamental mechanisms through which cirrus clouds form; homo- and heterogeneous ice nucleation (henceforth hom and het). The relative contribution of each mechanism to ice crystal production often determines the microphysical and radiative properties of a cirrus cloud. A new satellite remote sensing method is described in this study to estimate cirrus cloud ice particle number concentration and the relative contribution of hom and het to cirrus cloud formation as a function of altitude, latitude, season and surface type (e.g. land vs. ocean). This method uses co-located observations from the Infrared Imaging Radiometer (IIR) and from the CALIOP (Cloud and Aerosol Lidar with Orthogonal Polarization) lidar aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) polar orbiting satellite, employing IIR channels at 10.6 μm and 12.05 μm. The method is applied here to single-layered clouds of visible optical depth between about 0.3 and 3. Two years of Version 3 data have been analyzed for the years 2008 and 2013, with each season characterized in terms of 532 nm cirrus cloud centroid altitude and temperature, the cirrus cloud ice particle number concentration, effective diameter, layer-average ice water content and visible optical depth. Using a conservative criterion for hom cirrus, on average, the sampled cirrus clouds formed through hom occur about 43 % of the time in the Arctic and 50 % of the time in the Antarctic, and during winter at mid-latitudes in the Northern Hemisphere, hom cirrus occur 37 % of the time. Elsewhere (and during other seasons in the Northern Hemisphere mid-latitudes), this hom cirrus fraction is lower. Processes that could potentially explain these observations are discussed, as well as the potential relevancy of these results to ice nucleation studies, climate modeling and jet-stream dynamics.


2013 ◽  
Vol 13 (17) ◽  
pp. 9097-9118 ◽  
Author(s):  
Z. A. Kanji ◽  
A. Welti ◽  
C. Chou ◽  
O. Stetzer ◽  
U. Lohmann

Abstract. Ice nucleation in the atmosphere is central to the understanding the microphysical properties of mixed-phase and cirrus clouds. Ambient conditions such as temperature (T) and relative humidity (RH), as well as aerosol properties such as chemical composition and mixing state play an important role in predicting ice formation in the troposphere. Previous field studies have reported the absence of sulfate and organic compounds on mineral dust ice crystal residuals sampled at mountain top stations or aircraft based measurements despite the long-range transport mineral dust is subjected to. We present laboratory studies of ice nucleation for immersion and deposition mode on ozone aged mineral dust particles for 233 < T < 263 K. Heterogeneous ice nucleation of untreated kaolinite (Ka) and Arizona Test Dust (ATD) particles is compared to corresponding aged particles that are subjected to ozone concentrations of 0.4–4.3 ppmv in a stainless steel aerosol tank. The portable ice nucleation counter (PINC) and immersion chamber combined with the Zurich ice nucleation chamber (IMCA-ZINC) are used to conduct deposition and immersion mode measurements, respectively. Ice active fractions as well as ice active surface site densities (ns) are reported and observed to increase as a function of decreasing temperature. We present first results that demonstrate enhancement of the ice nucleation ability of aged mineral dust particles in both the deposition and immersion mode due to ageing. We also present the first results to show a suppression of heterogeneous ice nucleation activity without the condensation of a coating of (in)organic material. In immersion mode, low ozone exposed Ka particles showed enhanced ice activity requiring a median freezing temperature of 1.5 K warmer than that of untreated Ka, whereas high ozone exposed ATD particles showed suppressed ice nucleation requiring a median freezing temperature of 3 K colder than that of untreated ATD. In deposition mode, low exposure Ka had ice active fractions of an order of magnitude higher than untreated Ka, whereas high ozone exposed ATD had ice active fractions up to a factor of 4 lower than untreated ATD. From our results, we derive and present parameterizations in terms of ns(T) that can be used in models to predict ice nuclei concentrations based on available aerosol surface area.


Sign in / Sign up

Export Citation Format

Share Document