THE ICE NUCLEATION BEHAVIOR OF AMINO-ACID PARTICLES

1966 ◽  
Vol 44 (10) ◽  
pp. 2431-2445 ◽  
Author(s):  
J. Maybank ◽  
N. Barthakur

The problem of whether ice nucleation takes place more readily from the vapor directly to the solid, or via an intermediate liquid phase has been studied for several of the more efficient amino-acid nucleators. It has been shown that the threshold temperatures observed in cloud chamber tests are in fact those of the material acting as freezing nuclei (i.e. via the liquid phase), and any discrepancies between such tests and trials with bulk water may be accounted for satisfactorily by partial destruction of the nucleus surface by the water. Investigations on ice formation about airborne particles and on macroscopic amino-acid crystals have shown that for certain of these substances a transition in behavior takes place around −20 °C. Below this temperature, ice formation no longer requires saturation conditions with respect to supercooled water and so the particles may be considered to act by converting the vapor directly to ice, and can, therefore, be designated sublimation nuclei.The major obstacle in the way of airborne particles acting as freezing nuclei has been the requirement that they act first as condensation centers. Under the conditions prevailing in supercooled clouds with vapor pressures equal to, or barely exceeding that of water saturation, condensation is unlikely on the somewhat hydrophobic surfaces of amino-acid particles. It has been shown, however, by using a radioactive tracer in small water droplets that droplet–particle collisions can occur. While not efficient, this process would permit a few particles in a cloud chamber experiment to act as freezing nuclei, thereby establishing the potential activity of the material itself.

2019 ◽  
Vol 116 (17) ◽  
pp. 8184-8189 ◽  
Author(s):  
Robert O. David ◽  
Claudia Marcolli ◽  
Jonas Fahrni ◽  
Yuqing Qiu ◽  
Yamila A. Perez Sirkin ◽  
...  

Ice nucleation in the atmosphere influences cloud properties, altering precipitation and the radiative balance, ultimately regulating Earth’s climate. An accepted ice nucleation pathway, known as deposition nucleation, assumes a direct transition of water from the vapor to the ice phase, without an intermediate liquid phase. However, studies have shown that nucleation occurs through a liquid phase in porous particles with narrow cracks or surface imperfections where the condensation of liquid below water saturation can occur, questioning the validity of deposition nucleation. We show that deposition nucleation cannot explain the strongly enhanced ice nucleation efficiency of porous compared with nonporous particles at temperatures below −40 °C and the absence of ice nucleation below water saturation at −35 °C. Using classical nucleation theory (CNT) and molecular dynamics simulations (MDS), we show that a network of closely spaced pores is necessary to overcome the barrier for macroscopic ice-crystal growth from narrow cylindrical pores. In the absence of pores, CNT predicts that the nucleation barrier is insurmountable, consistent with the absence of ice formation in MDS. Our results confirm that pore condensation and freezing (PCF), i.e., a mechanism of ice formation that proceeds via liquid water condensation in pores, is a dominant pathway for atmospheric ice nucleation below water saturation. We conclude that the ice nucleation activity of particles in the cirrus regime is determined by the porosity and wettability of pores. PCF represents a mechanism by which porous particles like dust could impact cloud radiative forcing and, thus, the climate via ice cloud formation.


2017 ◽  
Author(s):  
Donifan Barahona

Abstract. Heterogeneous ice nucleation initiated by particles immersed within droplets is likely the main pathway of ice formation in the atmosphere. Theoretical models commonly used to describe this process assume that it mimics ice formation from the vapor, neglecting interactions unique to the liquid phase. This work introduces a new approach that accounts for such interactions by linking the ability of particles to promote ice formation to the modification of the properties of water near the particle-liquid interface. It is shown that the same mechanism that lowers the thermodynamic barrier for ice nucleation also tends to decrease the mobility of water molecules, hence the ice-liquid interfacial flux. Heterogeneous ice nucleation in the liquid phase is thus determined by the competition between thermodynamic and kinetic constraints to the formation and propagation of ice. At the limit, ice nucleation may be mediated by the dynamics of vicinal water instead of the nucleation work. This new ice nucleation regime is termed spinodal ice nucleation. Comparison of predicted nucleation rates against published data suggests that some materials of atmospheric relevance may nucleate ice in this regime.


2020 ◽  
Author(s):  
Claudia Marcolli ◽  
Fabian Mahrt ◽  
Bernd Kärcher

Abstract. How ice crystals form in the troposphere strongly affects cirrus cloud properties. Atmospheric ice formation is often initiated by aerosol particles that act as ice nucleating particles. The aerosol-cloud interactions of soot and associated feedbacks remain uncertain, in part because a coherent understanding of the ice nucleation mechanism and activity of soot has not yet emerged. Here, we provide a new framework that predicts ice formation on soot particles via pore condensation and freezing (PCF) that, unlike previous approaches, considers soot particle properties capturing their vastly different pore properties compared to other aerosol species such as mineral dust. During PCF, water is taken up below water saturation into pores on soot aggregates by capillary condensation. At cirrus temperatures, pore water can freeze homogeneously and subsequently grow into a macroscopic ice crystal. In the soot-PCF framework presented here, the relative humidity conditions required for these steps are derived for different pore types as a function of temperature. The pore types considered here evolve from idealized stacking of equally sized primary particles, either in tetrahedral or cubic packing arrangements. Specifically, we encompass n-membered ring pores that form between n individual spheres within the same layer of primary particles as well as pores in the form of inner cavities that form between two layers of primary particles. We treat soot primary particles as perfect spheres and use the contact angle between soot and water (θsw), the primary particle diameter (Dpp) and the degree of primary particle overlap (overlap coefficient, Cov) to characterize soot pore properties. We find that n-membered ring pores are the dominant pore structures for soot-PCF, as they are common features of soot aggregates and have a suitable geometry for both, filling with water and growing ice below water saturation. We focus our analysis on three-membered and four-membered ring pores as they are of the right size for PCF assuming primary particle sizes typical for atmospheric soot particles. For these pore types, we derive equations that describe the conditions for all three steps of soot-PCF, namely capillary condensation, ice nucleation, and ice growth. Since at typical cirrus conditions homogeneous ice nucleation can be considered immediate as soon as the water volume within the pore is large enough to host a critical ice embryo, soot-PCF becomes either limited by capillary condensation or ice crystal growth. For instance, our results show that at typical cirrus temperatures of T = 220 K, three-membered ring pores formed between primary particles with θsw = 60°, Dpp = 20 nm, and Cov = 0.05 are ice growth limited, as the ice requires a relative humidity with respect to ice of RHi = 137 % to grow out of the pore, while a sufficient volume of pore water for ice nucleation has condensed already at RHi = 86 %. Conversely, four-membered ring pores with the same primary particle size and an overlap coefficient of Cov = 0.1 are capillary condensation limited as they require RHi = 129 % to gather enough water for ice nucleation, compared with only 124 % RHi, required for ice growth. We use the soot-PCF framework to derive a new equation to parameterize of ice formation on soot particles via PCF. This equation is based on soot properties that are routinely measured, including the primary particle size and overlap, and the fractal dimension. These properties, along with the number of primary particles making up an aggregate and the contact angle between water and soot, constrain the parameterization. Applying the new parameterization to previously reported laboratory data of ice formation on soot particles provides direct evidence that ice nucleation on soot aggregates takes place via PCF. We conclude that this new framework clarifies the ice formation mechanism on soot particles at cirrus conditions and provides a new perspective to represent ice formation on soot in climate models.


2019 ◽  
Vol 19 (17) ◽  
pp. 11143-11158 ◽  
Author(s):  
Naama Reicher ◽  
Carsten Budke ◽  
Lukas Eickhoff ◽  
Shira Raveh-Rubin ◽  
Ifat Kaplan-Ashiri ◽  
...  

Abstract. The prediction of cloud ice formation in climate models remains a challenge, partly due to the complexity of ice-related processes. Mineral dust is a prominent aerosol in the troposphere and is an important contributor to ice nucleation in mixed-phase clouds, as dust can initiate ice heterogeneously at relatively low supercooling conditions. We characterized the ice nucleation properties of size-segregated mineral dust sampled during dust events in the eastern Mediterranean. The sampling site allowed us to compare the properties of airborne dust from several sources with diverse mineralogy that passed over different atmospheric paths. We focused on particles with six size classes determined by the Micro-Orifice Uniform Deposit Impactor (MOUDI) cutoff sizes: 5.6, 3.2, 1.8, 1.0, 0.6 and 0.3 µm. Ice nucleation experiments were conducted in the Weizmann Supercooled Droplets Observation on a Microarray (WISDOM) setup, whereby the particles are immersed in nanoliter droplets using a microfluidics technique. We observed that the activity of airborne particles depended on their size class; supermicron and submicron particles had different activities, possibly due to different composition. The concentrations of ice-nucleating particles and the density of active sites (ns) increased with the particle size and particle concentration. The supermicron particles in different dust events showed similar activity, which may indicate that freezing was dominated by common mineralogical components. Combining recent data of airborne mineral dust, we show that current predictions, which are based on surface-sampled natural dust or standard mineral dust, overestimate the activity of airborne dust, especially for the submicron class. Therefore, we suggest including information on particle size in order to increase the accuracy of ice formation modeling and thus weather and climate predictions.


2018 ◽  
Vol 18 (23) ◽  
pp. 17119-17141 ◽  
Author(s):  
Donifan Barahona

Abstract. Heterogeneous ice nucleation initiated by particles immersed within droplets is likely the main pathway of ice formation in the atmosphere. Theoretical models commonly used to describe this process assume that it mimics ice formation from the vapor, neglecting interactions unique to the liquid phase. This work introduces a new approach that accounts for such interactions by linking the ability of particles to promote ice formation to the modification of the properties of water near the particle–liquid interface. It is shown that the same mechanism that lowers the thermodynamic barrier for ice nucleation also tends to decrease the mobility of water molecules, hence the ice–liquid interfacial flux. Heterogeneous ice nucleation in the liquid phase is thus determined by the competition between thermodynamic and kinetic constraints to the formation and propagation of ice. At the limit, ice nucleation may be mediated by kinetic factors instead of the nucleation work. This new ice nucleation regime is termed spinodal ice nucleation. The comparison of predicted nucleation rates against published data suggests that some materials of atmospheric relevance may nucleate ice in this regime.


2019 ◽  
Author(s):  
Naama Reicher ◽  
Carsten Budke ◽  
Lukas Eickhoff ◽  
Shira Raveh-Rubin ◽  
Ifat Kaplan-Ashiri ◽  
...  

Abstract. Predictions of cloud ice formation in climate models remain a challenge, partly due to the complexity of ice-related processes. Mineral dust is a prominent aerosol in the troposphere and is known to be an important contributor to ice nucleation in mixed phase clouds, as dust can initiate ice heterogeneously at relatively low supercooling conditions. We characterized the ice nucleation properties of size-segregated mineral dust sampled during dust events in the Eastern Mediterranean. The sampling site allowed us to compare between the properties of airborne dust from several sources with diverse mineralogy that passed over different atmospheric paths. We focused on particles with six size-classes, determined by the Micro-Orifice Uniform Deposit Impactor (MOUDI) cut-off sizes: 5.6, 3.2, 1.8, 1.0, 0.6 and 0.3 µm. Ice nucleation experiments were conducted in the WeIzmann Supercooled Droplets Observation on Microarray (WISDOM) setup, where the particles are immersed in nanoliter droplets using a microfluidics technique. We observed that the activity of airborne particles depended on their size-class, where supermicron and submicron particles had different activities, possibly due to different composition. The concentrations of ice nucleating particles and the density of active sites (ns) increased with the particle size and particle concentration. The supermicron particles in different dust events showed similar activity, which may indicate that freezing was dominated by common mineralogical components. Combining recent data of airborne mineral dust, we show that current predictions, which are based on natural dust or standard mineral dust, overestimate the activity of airborne dust, especially for the submicron class, and therefore we suggest to include information of particle size in order to increase the accuracy of ice formation and, thus, weather and climate predictions.


2011 ◽  
Vol 11 (1) ◽  
pp. 31-41 ◽  
Author(s):  
Z. A. Kanji ◽  
P. J. DeMott ◽  
O. Möhler ◽  
J. P. D. Abbatt

Abstract. The University of Toronto continuous flow diffusion chamber (UT-CFDC) was used to study heterogeneous ice nucleation at the International Workshop on Comparing Ice Nucleation Measuring Systems (ICIS 2007) which also represented the 4-th ice nucleation workshop, on 14–28 September 2007. One goal of the workshop was to inter-compare different ice nucleation measurement techniques using the same aerosol sample source and preparation method. The aerosol samples included four types of desert mineral dust, graphite soot particles, and live and dead bacterial cells (Snomax®). This paper focuses on the UT-CFDC results, with a comparison to techniques of established heritage including the Colorado State CFDC and the AIDA expansion chamber. Good agreement was found between the different instruments with a few specific differences, especially at low temperatures, perhaps due to the variation in how onset of ice formation is defined between the instruments and the different inherent residence times. It was found that when efficiency of ice formation is based on the lowest onset relative humidity, Snomax® particles were most efficient followed by the desert dusts and then soot. For all aerosols, deposition mode freezing was only observed for T<45 K except for the dead bacteria where freezing occurred below water saturation as warm as 263 K.


2012 ◽  
Vol 12 (6) ◽  
pp. 14697-14726 ◽  
Author(s):  
C. Chou ◽  
O. Stetzer ◽  
T. Tritscher ◽  
R. Chirico ◽  
M. F. Heringa ◽  
...  

Abstract. A measurement campaign (IMBALANCE) was conducted in 2009 and aimed at characterizing the physical and chemical properties of freshly emitted and photochemically aged combustion particles emitted from a log wood burner and diesel vehicles: a EURO3 Opel Astra with a diesel oxidation catalyst (DOC) but no particle filter and a EURO2 Volkswagen Transporter TDI Syncro with no emission after-treatment. Ice nucleation experiments in the deposition and condensation freezing modes were conducted with the Portable Ice Nucleation Chamber (PINC) at three nominal temperatures, −30 °C, −35 °C and −40 °C. Freshly emitted diesel particles showed ice formation only at −40 °C in the deposition mode at 137% relative humidity with respect to ice (RHi) and 92% relative humidity with respect to water (RHw), and photochemical aging did not play a role in modifying their ice nucleation behavior. Only one diesel experiment where α-pinene was added, showed an ice nucleation enhancement after the aging at −35 °C. Wood burning particles also act as ice nuclei (IN) at −40 °C in the deposition mode at the same conditions as for diesel particles and photochemical aging did also not alter the ice formation properties of the wood burning particles. Unlike diesel particles, wood burning particles form ice via condensation freezing at −35 °C with no ice nucleation observed at −30 °C for wood burning particles. Photochemical aging did not affect the ice nucleation ability of the diesel and wood burning particles at the three different temperatures investigated but a broader range of temperatures below −30 °C need to be investigated in order to draw an overall conclusion on the effect of photochemical aging on deposition/condensation ice nucleation across the entire temperature range relevant to cold clouds.


2018 ◽  
Vol 18 (18) ◽  
pp. 13363-13392 ◽  
Author(s):  
Fabian Mahrt ◽  
Claudia Marcolli ◽  
Robert O. David ◽  
Philippe Grönquist ◽  
Eszter J. Barthazy Meier ◽  
...  

Abstract. Ice nucleation by different types of soot particles is systematically investigated over the temperature range from 218 to 253 K relevant for both mixed-phase (MPCs) and cirrus clouds. Soot types were selected to represent a range of physicochemical properties associated with combustion particles. Their ice nucleation ability was determined as a function of particle size using relative humidity (RH) scans in the Horizontal Ice Nucleation Chamber (HINC). We complement our ice nucleation results by a suite of particle characterization measurements, including determination of particle surface area, fractal dimension, temperature-dependent mass loss (ML), water vapor sorption and inferred porosity measurements. Independent of particle size, all soot types reveal absence of ice nucleation below and at water saturation in the MPC regime (T>235 K). In the cirrus regime (T≤235 K), soot types show different freezing behavior depending on particle size and soot type, but the freezing is closely linked to the soot particle properties. Specifically, our results suggest that if soot aggregates contain mesopores (pore diameters of 2–50 nm) and have sufficiently low water–soot contact angles, they show ice nucleation activity and can contribute to ice formation in the cirrus regime at RH well below homogeneous freezing of solution droplets. We attribute the observed ice nucleation to a pore condensation and freezing (PCF) mechanism. Nevertheless, soot particles without cavities of the right size and/or too-high contact angles nucleate ice only at or well above the RH required for homogeneous freezing conditions of solution droplets. Thus, our results imply that soot particles able to nucleate ice via PCF could impact the microphysical properties of ice clouds.


2016 ◽  
Author(s):  
Claudia Marcolli ◽  
Baban Nagare ◽  
André Welti ◽  
Ulrike Lohmann

Abstract. AgI is one of the best investigated ice nuclei. It has relevance for the atmosphere since it is used for glaciogenic cloud seeding. Theoretical and experimental studies over the last sixty years provide a complex picture of silver iodide as ice nucleating agent with conflicting and inconsistent results. This review compares experimental ice nucleation studies in order to analyse the factors that influence the ice nucleation ability of AgI. We have performed experiments to compare contact and immersion freezing by AgI. This is one of three papers that describe and analyse contact and immersion freezing experiments with AgI. In Nagare et al. (Nagare, B., Marcolli, C., Stetzer, O., and Lohmann, U.: Comparison of measured and calculated collision efficiencies at low temperatures, Atmos. Chem. Phys., 15, 13759–13776, doi:10.5194/acp-15-13759-2015, 2015) collision efficiencies based on contact freezing experiments with AgI are determined and compared with theoretical formulations. In a companion paper, contact freezing experiments are compared with immersion freezing experiments conducted with AgI, kaolinite, and ATD as ice nuclei. The following picture emerges from this analysis: The ice nucleation ability of AgI seems to be enhanced when the AgI particle is on the surface of a droplet, which is indeed the position that a particle takes when it can freely move in a droplet. Ice nucleation by particles with surfaces exposed to air, depends on water adsorption. AgI surfaces seem to be most efficient as ice nuclei when they are exposed to relative humidity at or even above water saturation. For AgI particles that are totally immersed in water, the freezing temperature increases with increasing AgI surface area. Higher threshold freezing temperature seem to correlate with improved lattice matches as can be seen for AgI-AgCl solid solutions and 3AgI•NH4I•6H2O, which have slightly better lattice matches with ice than AgI and also higher threshold freezing temperatures. However, the effect of a good lattice match is annihilated when the surfaces have charges. Also, the ice nucleation ability seems to decrease during dissolution of AgI particles. This introduces an additional history and time dependence of ice nucleation in cloud chambers with short residence times.


Sign in / Sign up

Export Citation Format

Share Document