scholarly journals Supplementary material to "Recent decrease trend of atmospheric mercury concentrations in East China: the influence of anthropogenic emissions"

Author(s):  
Yi Tang ◽  
Shuxiao Wang ◽  
Qingru Wu ◽  
Kaiyun Liu ◽  
Long Wang ◽  
...  
2018 ◽  
Author(s):  
Yi Tang ◽  
Shuxiao Wang ◽  
Qingru Wu ◽  
Kaiyun Liu ◽  
Long Wang ◽  
...  

Abstract. Measurements of gaseous elemental Hg (GEM), other air pollutants including SO2, NOx, O3, PM2.5, CO, and meteorological conditions were carried out at Chongming Island in East China from March 1 in 2014 to December 31 in 2016. During the sampling period, GEM concentrations significantly decreased from 2.68 ± 1.07 ng m−3 in 2014 to 1.60 ± 0.56 ng m−3 in 2016. Monthly mean GEM concentrations showed a significant decrease with a rate of −0.60 ng m−3 yr−1 (R2 = 0.6389, p 


2011 ◽  
Vol 11 (11) ◽  
pp. 29807-29843 ◽  
Author(s):  
J.-T. Lin

Abstract. Vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) retrieved from space provide valuable information to estimate emissions of nitrogen oxides (NOx) inversely. Accurate emission attribution to individual sources, important both for understanding the global biogeochemical cycling of nitrogen and for emission control, remains difficult. This study presents a regression-based multi-step inversion approach to estimate emissions of NOx from anthropogenic, lightning and soil sources individually for 2006 over East China on a 0.25° long × 0.25° lat grid, employing the DOMINO product version 2 retrieved from the Ozone Monitoring Instrument. The nested GEOS-Chem model for East Asia is used to simulate the seasonal variations of different emission sources and impacts on VCDs of NO2 for the inversion purpose. Sensitivity tests are conducted to evaluate key assumptions embedded in the inversion process. The inverse estimate suggests annual budgets of about 7.1 TgN (±38%), 0.22 TgN (±46%), and 0.40 TgN (±48%) for the a posteriori anthropogenic, lightning and soil emissions, respectively, each about 24% higher than the respective a priori values. The enhancements in anthropogenic emissions are largest in cities and areas with extensive use of coal, particularly in the north in winter, as evident on the high-resolution grid. Derived soil emissions are consistent with recent bottom-up estimates. They are each less than 6% of anthropogenic emissions annually, increasing to about 13% for July. Overall, anthropogenic emissions are found to be the dominant source of NOx over East China with important implications for nitrogen control.


Author(s):  
Hélène Angot ◽  
Emma Rutkowski ◽  
Maryann Sargent ◽  
Steven C. Wofsy ◽  
Lucy R. Hutyra ◽  
...  

Mercury (Hg) is an environmental toxicant dangerous to human health and the environment. Its anthropogenic emissions are regulated by global, regional, and local policies. Here, we investigate Hg sources in...


2015 ◽  
Vol 120 (16) ◽  
pp. 8563-8574 ◽  
Author(s):  
Ben Yu ◽  
Xun Wang ◽  
Che‐Jen Lin ◽  
Xuewu Fu ◽  
Hui Zhang ◽  
...  

2009 ◽  
Vol 9 (5) ◽  
pp. 19205-19241 ◽  
Author(s):  
J.-T. Lin ◽  
M. B. McElroy ◽  
K. F. Boersma

Abstract. A new methodology is developed to constrain Chinese anthropogenic emissions of nitrogen oxides (NOx) from four major sectors (industry, power plants, mobile and residential) in July 2008. It combines tropospheric NO2 column retrievals from GOME-2 and OMI, taking advantage of their different passing time over China (9:30 a.m. local time versus 1:30 p.m.), and explicitly accounts for diurnal variations in anthropogenic emissions of NOx as well as their tropospheric lifetime and column concentrations. The approach is based on the daytime variation of NOx (when its lifetime is relatively short) alone; and potential errors in inverse modeling by neglecting horizontal transport are minimized. Separation of anthropogenic sectors relies on the estimated diurnal profiles and budget uncertainties. Our best top-down estimate suggests a national budget of 6.8 Tg N/yr (5.5 Tg N/yr for East China), close to the a priori bottom-up emission estimate from the INTEX-B mission. The top-down emissions are lower than the a priori near Beijing, in the northeastern provinces and along the east coast; yet they exceed the a priori over many inland regions. Systematic errors in satellite retrievals are estimated to lead to underestimation of top-down emissions by at most 17% (most likely 10%). Effects of other factors on the top-down estimate are typically less than 15%, including lightning, soil emissions, mixing in planetary boundary layer, anthropogenic emissions of carbon monoxide and volatile organic compounds, assumptions on emission diurnal variations, and uncertainties in the four sectors. The a posteriori emission budget is 5.7 Tg N/yr for East China.


2015 ◽  
Vol 15 (7) ◽  
pp. 10389-10424 ◽  
Author(s):  
J. Zhu ◽  
T. Wang ◽  
J. Bieser ◽  
V. Matthias

Abstract. The contribution from different emission sources and atmospheric processes to gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), particulate bound mercury (PBM) and mercury deposition in East China were quantified using the Community Multi-scale Air Quality (CMAQ-Hg) modeling system run with nested grid resolution of 27 km. Natural source (NAT) and six categories of anthropogenic mercury sources (ANTH) including cement production (CEM), domestic life (DOM), industrial boilers (IND), metal production (MET), coal-fired power plants (PP) and traffic (TRA) were considered for source apportionment. NAT was responsible for 36.6% of annual averaged GEM concentration which was regard as the most important source for GEM in spite of obvious seasonal variation. Among ANTH, the influence of MET and PP on GEM were most evident especially in winter. ANTH dominated the variations of GOM and PBM concentration with a contribution of 86.7 and 79.1% respectively. Among ANTH, IND was the largest contributor for GOM (57.5%) and PBM (34.4%) so that most mercury deposition came from IND. The effect of mercury emitted from out of China was indicated by > 30% contribution to GEM concentration and wet deposition. The contribution from nine processes consisting of emissions (EMIS), gas-phase chemical production/loss (CHEM), horizontal advection (HADV), vertical advection (ZADV), horizontal advection (HDIF), vertical diffusion (VDIF), dry deposition (DDEP), cloud processes (CLDS) and aerosol processes (AERO) were calculated for processes analysis with their comparison in urban and non-urban regions of Yangtze River Delta (YRD). EMIS and VDIF affected surface GEM and PBM concentration most and tended to compensate each other all the time in both urban and non-urban areas. However, DDEP was the most important removal process for GOM with 7.3 and 2.9 ng m−3 reduced in the surface of urban and non-urban areas respectively in a whole day. Diurnal profile variation of processes revealed the transportation of GOM from urban area to non-urban area and the importance of CHEM/AERO in higher altitudes which caused diffusion of GOM downwards to non-urban area partly. Most of the anthropogenic mercury transported and diffused away from urban area by HADV and VDIF and made gain of mercury in non-urban areas by HADV. Natural emissions only influenced CHEM and AERO more significantly than anthropogenic. Local emission in the YRD contributed 8.5% more to GEM and ~ 30% more to GOM and PBM in urban areas compared to non-urban areas.


Sign in / Sign up

Export Citation Format

Share Document